

Sensor optimisation

Jörn Schwandt

Institut für Experimentalphysik Universität Hamburg

AGIPD Consortium Meeting PSI 8.3.2010

Jörn Schwandt Universität Hamburg

PSI, 8.03.2011

Introduction

• Some of the so far specified sensor parameters:

Parameter	Specification		
thickness	500µm		
pixel size	200µm x 200µm		
type	p+ n		
resistivity	~5kΩ · cm		
V_fd	< 200V		
V_op	500∨ -		
C_int	< 0.5pF	✓ pixel size ►	
l_leak	< 10 nA/pixel	overhang	
Left to define: - gap - metal overhang - curvatures at edges - guard ring structure	junctio	Al SiO2 Al p+ Gap + Gap + thickn thickn	iess

۲

υн

НÌ

2

Introduction

- The problem: Surface damages
- At gated diodes measured values:
- Question:
 - What is the fill state of the traps?

We assume acceptor like, but have not taken this into account in the simulations.

- I. higher oxide charge
- 2. higher surface recombination velocity

Dosis [MGy]	Nox [cm^-2]	S_0[cm/s]	
0	1.00E+11	8	
0.1	1.33E+12	3.50E+03	
I	2.07E+12	7.50E+03	
10	2.78E+12	I.20E+04	
100	2.87E+12	I.05E+04	

• The effects will be:

- I. Increased leakage current
- 2. Increased inter-pixel capacitance
- 3. Lower breakdown voltage

Introduction

- Oxide charge effects in p-n Sensor:
- Strong curved depletion region boundary
- \rightarrow high electric field
- Negatively charged accumulation layer
- \rightarrow not fully depleted surface
- \rightarrow high electric field (over short path)
- \rightarrow charge losses
- Surface current \propto not depleted surface Breakdown path

- For a correct simulation we need:
 - I. Oxide charge density distribution
 - 2. Surface recombination velocity
 - 3. Oxide thickness
 - 4. Realistic implant profile
- How to get implant profiles?

Process simulation \leftrightarrow SIMS

UH

Process simulation I

- Commonly used technique for p+ junction formation: Ion Implantation
- Steps:
 - I. Implantation:

• • • •			
Simulations:	Wafer dop	P IEI2[cm^-3]	
	Orientation	()	
	Tilt angle	0°	
	Species	Boron	
	Dosis	IEI5,5EI5,IEI6[cm^-2]	
	Energy	70,150,200keV	

2. Drive in:

Simulations:

Temp.	975, 1025 °C		
Time	same for both		

• The simulation is calibrated with a SIMS measurement for the same process.

Boron implantation, Dosis 1E15 [cm^-2]

Jörn Schwandt Universität Hamburg

Process simulation 2

• Conclusion:

Junction depth up to 3um are possible with slightly increases temperature.

• In the following used profiles:

	-0.5 0		
	0.5		
Ē	1		
l) ≻	1.5		Boron [cm^-3]
	2		4.0E+19 1.2E+18 2.6E+16
	2.5		1.1E+15 3.3E+13
	3 - 3	4 5 6	1.0E+12
		X [um]	
		Jörn Schwandt Universität Hamburg	

depth I.2

Dosis [cm^-2]	Energy [keV]	Temp. [C]	Junction depth [um]	lateral length [um]	Peak con[cm^-3]
1.00E+15	70	975	1.16	0.99	1.77E+19
5.00E+15	70	975	1.48	1.29	5.30E+19
1.00E+16	70	975	1.76	1.43	8.50E+19
1.00E+15	150	975	1.46	1.07	1.65E+19
5.00E+15	150	975	1.72	1.22	5.80E+19
1.00E+16	150	975	1.98	1.61	9.50E+19
1.00E+15	200	975	1.61	1.12	1.32E+19
5.00E+15	200	975	1.82	1.32	5.40E+19
1.00E+16	200	975	2.06	1.54	9.75E+19
1.00E+15	70	1025	1.92	1.71	1.27E+19
5.00E+15	70	1025	2.4	1.95	3.89E+19
1.00E+16	70	1025	2.75	2.35	6.12E+19
1.00E+15	150	1025	2.16	1.7	1.33E+19
5.00E+15	150	1025	2.57	2.16	4.30E+19
1.00E+16	150	1025	2.91	2.4	6.87E+19
1.00E+15	200	1025	2.28	1.75	1.18E+19
5.00E+15	200	1025	2.6	2.1	4.24E+19
1.00E+16	200	1025	2.97	2.35	6.81E+19

PSI, 8.03.2011

UН

ΪÌ

6

Device simulation

- Geometries:
- Oxide thickness: 300 nm
- Used models:
 - Drift-Diffusion
 - Newton boundary conditions
 - Temperature: T = 293K
 - Statistics: Fermi
 - Bandgap: Bandgap narrowing model
 - Mobility: Doping dependent , High-field saturation, Carrier-Carrier Scattering, Degradation at interfaces
 - SRH Recombination: Doping dependent (lifetime 1ms), Temperature dependent, Field enhancement
 - Auger Recombination
 - Hurkx Band-to-Band Tunnelling
 - Avalanche Generation: van Overstraeten de Man Model , Driving force: Gradient of the quasi-Fermi level
 - Physics at the Si/SiO2 interface:
 - 1. Fixed charge (measured values, homogenous distribution at interface)
 - 2. Surface SRH Recombination (measured values)
- Breakdown criteria: Ionisation integral for electron or holes = I

 $I_p := \int_0^{W_d} \alpha_p \exp\left[-\int_0^x (\alpha_p - \alpha_n) dx'\right] dx \quad \begin{array}{l} \alpha_p, \alpha_n \text{ ionization coefficients for hole and electron} \\ W_d \quad \text{width depleted region} \end{array}$

Because the multiplication factor M_p satisfies $1 - \frac{1}{M_p} = I_p$

we have $M_p \to \infty$ for $I_p \to 1$

gap [um]	20	30	40
overhang [um]	0, 2.5, 5	5, 10	0, 2.5, 5, 10

Scaling 2D to 3D

- Interpixel capacitance:
 - I. Analytical expression for pixel (Cerdeira et.al IEEE T Nucl Sci Vol. 44 No I pp.63)
 - 2. Analytical expression for strip (Cattaneo Solid State Elec. Vol 54(3) pp. 252)
 - 3. Assumption:

$$\frac{C_{int,Sim}^{Pix}}{C_{int,theo}^{Pix}} = \frac{C_{int,Sim}^{Str}}{C_{int,theo}^{Str}}$$

• Gap 20um, overhang 5um, junction depth 1.2um

Accumulation layer width was measured by cutting at 0.02um below SiO2/Si interface and measure the decrease of the electron density to IeI2[cm^-3].

- Breakdown for 10MGy at 494V
- Accumulation layer does not vanish for non irradiated sensor at high voltage

- Gap 20um, overhang 5um, junction depth 1.2um
- Simulation with and without avalanche

• I00kGy no contribution of impact ionisation

UН

ΗÌ

• Gap 20um, overhang 5um, junction depth 1.2um

• Up to 300V the accumulation layer potential is the same for IkGy, IMGy and I0MGy

12

• Gap 20um, overhang 2.5 vs. 5um, junction depth 1.2um

- For sufficient high voltage the smaller gap develops a smaller current.
- For I0MGy same breakdown voltage.
- Similar max. lat. E-Field.

• Gap 20um, overhang 5um, junction depth 1.2um vs. 2.4um

• The deeper junction shows for the 10MGy case no breakdown up 1000V and for 1kGy and 1MGy a slightly smaller current.

• Junction depth 2.4um

- No breakdown up to 1000V
- Keep in mind: diagonal of pixel is sqrt(2)*gap

Jörn Schwandt Universität Hamburg

PSI, 8.03.2011

- Capacitance simulations: 100kHz, junction depth 1.2um
- V_fd = 188 194V compared to 193V for pad sensor and dop. IE12
- C_b = 8.5 8.56fF compared to 8.43fF for pad sensor

• Decrease of interpixel capacitance with voltage due to accumulation layer

- First results of 3D Pixel simulation
- Quarter of full Pixel with gap 20um and overhang 5um simulated
- Gaussian doping profile with junction depth 1.5um

- 0Gy Pixel: Accumulation layer only around the diagonal for higher voltages
- Irradiated: Different behavior of surface depletion for pixel and strip
- → Scaling of current from strip to pixel difficult

UH

16

Conclusions

- I. Successful simulation of implantation profile
- 2. Simple recipe for scaling of 2D to 3D capacitance
- 3. Breakdown voltage for irradiated sensor: Design with 20um gap and 1.2um junction depth ~ 500V Design with 20um gap and 2.4 um junction depth > 1000V
- 4. current/pixel < InA seems to be no problem
- 5. accumulation layer decrease with voltage
- \Rightarrow first detailed results

UΗ

Backups

Jörn Schwandt Universität Hamburg

PSI, 8.03.2011

TCAD Simulation flow

- Used software Synopsys TCAD
- ICWBEV: Editing GDS files, mark simulation region
- Sentaurus Process:
- I-dim simulation for Phosphorus profile
 - 2. 2-dim simulation for Boron profile (10um around implant window)
 - 3. 2-dim simulation for geometry generation
- Structure Editor: I. Positioning of profiles
 2. Refinement windows for mesh
 3. Defining contacts
- Sentaurus Mesh: Generate mesh for device simulation
- Sentaurus Device: I. Simulation of I-V
 - 2. Small-signal analysis for C-V