WP 2.5 Control System but also touched issues in WP2.4

Peter Göttlicher, DESY-FEB, September  $17^{\text{th}}$ , 2009

- XFEL common organization
- issues for fast clocks/signals
- interface electronics internal control
  - fast veto possibilities
    - slow control

# XFEL common organization

- common development for the fast clocks/signals by British consortia: working prototype end 2010
- development for a slow control system on the example of AGIPD at DESY In Detector head (quadrant): ARM9/LINUX External system : PC and network may be example for the others

### **Organization:**

C&C: UniversityCollegeLondon(implementation) WP76(coordination) Chris Youngman Common specification,usage,... : AGIPD, LPD,DSSC SC: PC-µC WP76: New: Dana Wilson AGIPD: New: Lothar Steffen(DESY-FEB) HV-device programming testsWP76: S.Esanov

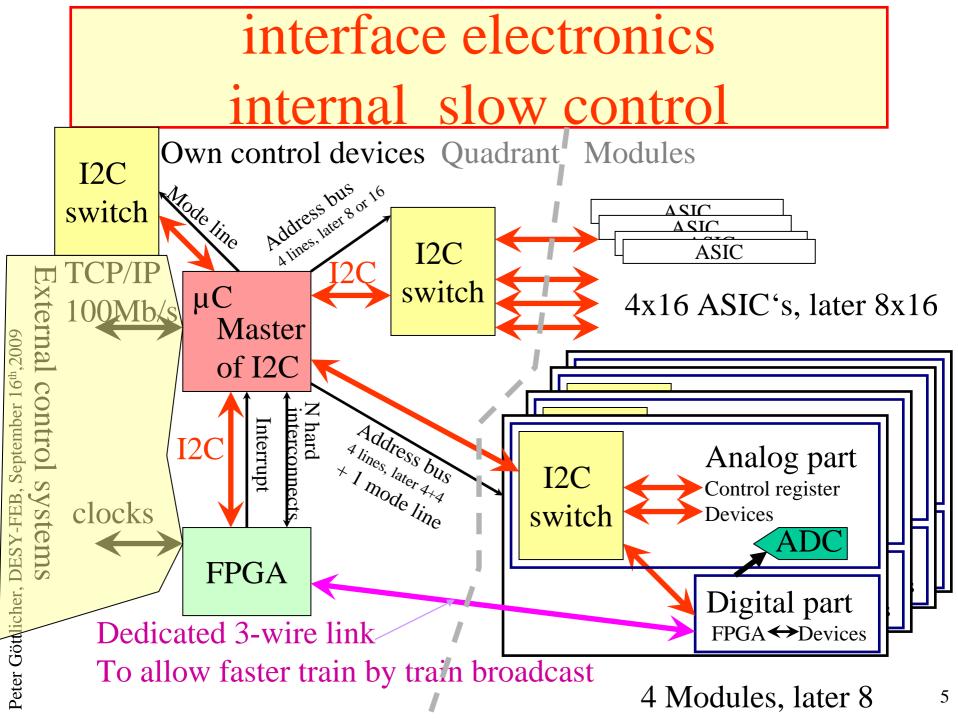
## issues for fast clocks/signals

- From XFEL via experimental Clock&Control:
  - get pre-warning (~10ms) of train start
  - get the bunch clock: (<=5MHz) w/o phase jumps
  - getting a continuous running clock just below 100MHz (our ADC's!) phase stable multiple of bunch clock
    New: Agreed from XFEL-acc.: no phase jumps on bunch-clk. that avoids complexity or PLL's , state machines
- At experimental area generated: Fast reject Timing/delay issues was discussion on last meeting
- -No specifications: needs of ASIC, yesterdays discussion
- -Next train builder and Clock&Control Meeting Oct 22<sup>nd</sup>

## fast clocks/signals.... cont.

**Consequences for ADC-clock** (and bunch CLK of ASIC?):

**Resources:** System(100MHz)/bunch clocks: continuous:


Goal: To keep the storage time easy defined,

- State machine from begin-train to end-digitize in the FPGA of the quadrant.
- Minimize storage time for used ASIC-capacitors? or fixed time for each ASIC-capacitor?

defines VHDL-code and fast signals to ASIC. ADC-Clock frequency: How granularity to set?

- Easy clocks: 100MS/s / (2\*n): 50, 25. (50% duty -cycle)
- With additional PLL's also 100MS/s \* m/(2\*n) :

m=1,2 or 3 should be sufficient .... My proposal Alternative: multiples of the 5MHz-bunch-clock, but that changes more likely with other beamline.



fast veto possibilities

Last XDAC: Can we handle later VETO's?

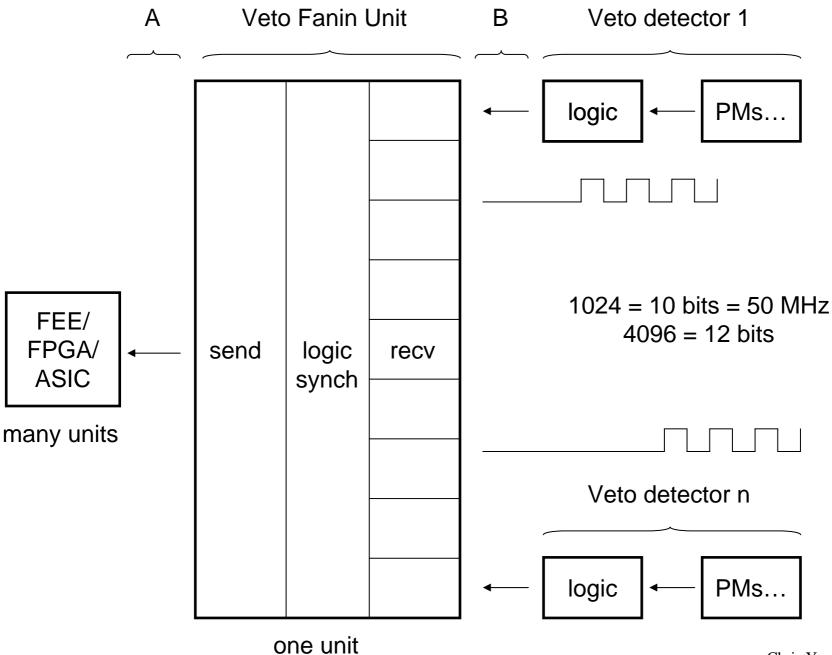
What can the interface electronics do to support the ASIC: Major task has to be in the ASIC

- **BASIC CONCEPTS:**
- Veto can be delayed to a fixed bunch number of 200ns.

ASIC has to organize handling of used cells but no additional fast LVDS signals in

backplane and HDI

- The quadrant FPGA can do
- Yesterday discussed like that More to coordinate With Wp76 1C&C the bookkeeping of used storage cells and distribute within 200ns the next free storage cer few LVDS line to ASIC's


OR

# fast veto possibilities... cont.

The next free cell number can be distributed within 200ns (<= 10bits)

- by few LVDS line 50Mbit/s, needs termination digital activity in HDI/ASIC while sampling
- multiple line (4 pairs) without termination.
- technology would depend on HDI signal handling
- To be optimized, may be none optimal usage at train-end At end of train might be a period,
  - in which all cells are used, but then a cell gets free again!
- Same LDVS lines used for control from quadrant-FPGA to ASIC
- Transfer after train-end from quadrant-FPGA to FPGA in module 400 picture\* 12bit for bunch ID = 4800 bits in 100ms

Favored Vesterday



Chris Youngman

### Slow control

### Monitoring data: How many, what? That are questions I get NOW asked by WP76.

Booting:

- Major part needed to boot the ASIC's Few bytes per pixel ? Mbytes ?
- Interface electronics:

Power settings :few bits / moduleTCP/IP addresses for output links:few bytesBoot parameter of pattern generator:few (100) bytebunch patternsfew kBytes

### Slow control.... continue

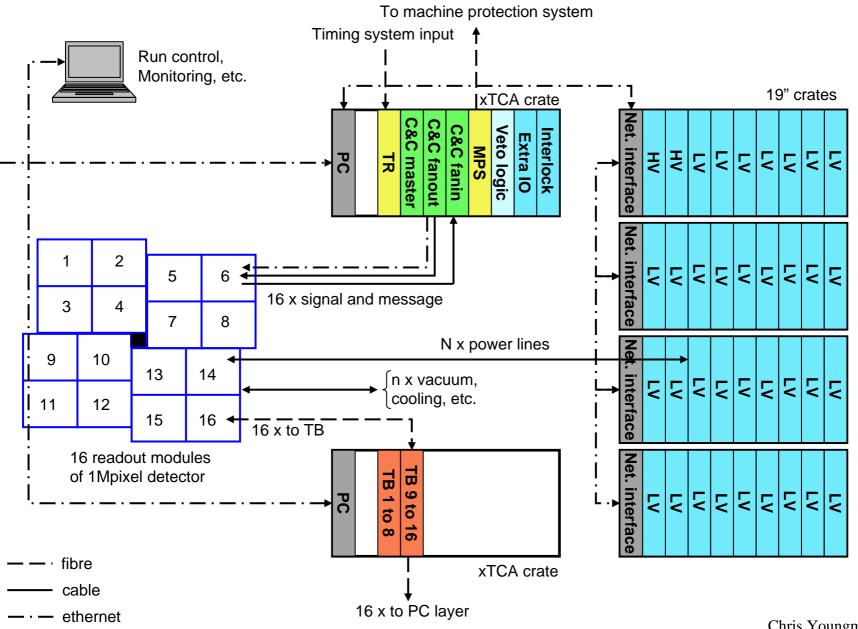
#### Monitoring:

- ASIC's?
- interface electronics:

Train by train:Busy, ready error stateData transfer performance (if feedback)few bytes

Slow: currents, voltages, temperatures<br/>control link performancefew 10sensors/module<br/>bytes/quadrant.

# Summary/Outlook


Common WP76 gets active:

- continuous clock, allows continuous operation of state machines.
- also force to us, to specify data volumes and meanings.

#### My statement, also in proposal:

"Definitions develops with progress in the developments."

Estimations of data volumes from interface possible, but not always the majority. ASIC?



Peter Göttlicher, DESY-FEB, September 16th, 2009

Chris Youngman