

Radiation Damage + Towards a Rad-hard Sensor Design

E.Fretwurst, R.Klanner, H.Perrey¹⁾, I.Pintilie^{*)}, A.Srivastava, T.Theedt, J.Xiao²⁾

(Univ. Hamburg, *)National Inst. Materials, Romania)

- 1. Reminder: Summary of radiation damage measurements and parameter extraction for simulation
- 2. Sensor simulation: Sensor model, inclusion of radiation effects, first results
- 3. Next steps: Measurements and simulations

²⁾ new (16.7.09) PhD student from China – supported by EU (Marie Curie-ITN: MCPAD)

¹⁾ has "left" radiation damage → moved early 2009 to 2nd thesis topic: precision measurement of the proton structure (as planned and promised at start of thesis)

1. Summary of radiation damage measurements and parameter extraction for simulation (from gated diode measurements)

→V_{fb} [N_{Ox}+N_{it}] and I_{Ox} [N_{it}] reach maximum at few MGy – then decrease (tentative conclusion: decrease due to N_{it} at high doses – reason not clear)

Relevant parameters:

1. N_{Ox}(fix) fixed oxide charges

Comparison to measurements

AGIPD Meeting 16-17 September 2009 at PSI

- \rightarrow Impact of parameters on sensor performance
 - 1. $N_{O_x}^{fix}$ fixed positive oxide charges \leftarrow shift of ideal CMOS-C/V-curve
 - \rightarrow accumulation layer below oxide
 - \rightarrow strong electric fields causing breakdown
 - 2. N_{Ox}^{mob} mobile oxide charges (close to interface) \leftarrow hysteresis C/V-curve \rightarrow same effects as above; dependence on time + surface potential!
 - 3. D_{it} interface traps (integral N_{it}) \leftarrow TSC (Thermally Stimulated Current) \rightarrow current generation, if interface is exposed to E-field
 - \rightarrow contribution to surface charge density depends on
 - position of Fermi level
 - type of states
 - \rightarrow acceptors compensate positive oxide charges
 - \rightarrow donors enhance effect of positive oxide charges

\rightarrow reliable simulation is not a simple task !

2. Sensor Simulation

HELMHOLTZ

GEMEINSCHAFT

Aim: optimise design for radiation hardness using the results of test structure measurements as input

1st project: breakdown and current for p⁺-n guard-ring structure

"generic sensor for first simulation"

"X-ray-entrance (p⁺)-side of generic sensor"

CTR: Current Terminating Ring

- CR: Current Ring
- GRi: Guard Ring i

Robert Klanner – Univ. Hamburg

Universität Hamburg

Program used: ISE-TCAD from Synopsis

Physical models used:

- SRH (Shockley-Read-Hall) recombination
- Auger recombination
- impact ionization
- trap models
- doping dependent mobility and high field saturation model, band to band tunneling
- surface recombination model

Simulation procedure:

Procedure

- Design structure in MDRAW
- Peed results into DESSIS
- Combine simulation of device (DESSIS) and circuit (SPICE)

Robert Klanner - Univ. Hamburg

CPU time: 100 min no. grid points: 60 000

- V_{bd} (break-down) > 1000 V

- optimized V(GR) \rightarrow increase by ~10%

Break-down voltage vs. radiation damage

- "ideal case": N_{0x}=N_{it}=0 (to understand optimisation - sensor model I)

bias=V₀, V₁=0.75·V₀, V₂=0.5·V, V₃=0.25·V \rightarrow

Robert Klanner - Univ. Hamburg

AGIPD Meeting 16-17 September 2009 at PSI

Robert Klanner – Univ. Hamburg

AGIPD Meeting 16-17 September 2009 at PSI

11/13

Sensor Simulation

UH IIII Universität Hamburg

details of breakdown regions: E-field

AGIPD Meeting 16-17 September 2009 at PSI

3. Next steps: Radiation damage and sensors simulations

3.1 Radiation damage measurements

- gated diodes under bias (under way)
- finish annealing studies (under way)
- segmented p⁺-n-sensor (characterization of unirradiated detector completed); ready for irradiation

Aim to complete work by end 2009

3.2 Simulations

- complete detailed comparison gated diodes 🗇 simulations
- compare breakdown simulations for segmented detector(s) with measurements
- sensor design based on above experience

Aim to complete work by mid 2010

bla-bla: