

HPAD 0.1

Test & Irradiation Campaign Report

Outline

- Characterisation of
 - DGNCAP, MIMCAP & DMIMCAP capacitors
 - DGPMOS, DGNMOS & ZVTDGNMOS FETs
 Storage Cells and Amps
- At
 - 0Gy, 1MGy, 10MGy and 100MGy
 - --30°C, 20°C and 70°C

Test Campaign

- Test of one HPAD 0.1 chip in a
 - climatic exposure test cabinet at
 - -30°C, 20°C, 70°C
- Irradiation of two HPAD 0.1 chips up to
 - 100MGy
 - @ DORIS F4 with
 - 5.4kGy/s from
 - 16.-21.12.2008
- Test with an HP4156A semiconductor parameter tester

DGNCAP Capacitors

Ulrich Trunk HPAD Meeting Hamburg 07.-08.04.2007

HELMHOLTZ

MIMCAP Capacitors

o(10⁻¹⁶A)
 @0Gy

o(10⁻¹⁴A)
 @100MGy

DualMIMCAP Capacitors

o(10⁻¹³A) @100MGy

Capacitors-Summary

- Increase of leakage by ~10² for all caps
- Dependency of leakage from node voltage
- No correlation of Leakage with plate-plate voltage
- DGNCAP leakage dependent on diffusion area

=> P-N junction leakage dominated

 Theory: no mechanism for radiation induced oxide leakage

Storage Cell

- Double DGPMOS switch
- DMIM storage capacitor

ek Run

ZVTDGNMOS source follower readout

Pattern:

- •Write (0.08Hz)
- •Read (cont.)
- •Measure voltage drop over 10s

Trig'd

Ulrich Trunk HPAD Meeting Hamburg 07.-08.04.2007

HELMHOLTZ

Storage Cell

Temperature [°C]

Thermal Efffects Linear DGPMOS: •Higher on-resistance

Enclosed DGPMOS •Higher leakage

•W/L-ratio

Storage Cell

Irradiation Effects

•Circuit dies between 1MGy and 10MGy due to insufficient write voltage

•Enclosed layout favourable due to lower leakage

•ZVTDGNMOS source follower still working perfectly after 100MGy!

DGPMOS

Ulrich Trunk HPAD Meeting Hamburg 07.-08.04.2007

HELMHOLTZ

DGPMOS

Ulrich Trunk HPAD Meeting Hamburg 07.-08.04.2007

HELMHOLTZ

DGPMOS

Irradiation Effects •*K*' almost halves •*V*_{th} rises to almost -2V @ 100MGy

HPAD Meeting Hamburg 07.-08.04.2007

DGNMOS

Ulrich Trunk HPAD Meeting Hamburg 07.-08.04.2007

2,5

2,5

ZVTDGNMOS

1.80E-04 Chip I 100MGy K'=9,927E-05 A/V/2 1,60E-04 Chip II 100MGy K'=1,020E-04 A/V^2 1,40E-04 Chip IV 0Gy K'=1,767E-04 A/V^2 1,20E-04 [A/V^2] 1,00E-04 ¥ 8,00E-05 6.00E-05 4.00E-05 2,00E-05 0.00E+00 0,5 0 1,5 2 Vgs[V] Enclosed ZVTDGNMOS Vth 0,14 Chip I 100MGv 0,12 Vth=0,129725420453016 Chip II 100MGv 0,1 Vth=0,133505189494957 Chip IV 0Gy Sqrt(Abs(Id)) [Sqrt(A)] /th=0,060886745966782 30.0 0,06 0.04 0.02

0,5

1

1,5

Vgs [V]

2,00E-04

-0,02 +

Enclosed ZVTDGNMOS K

Ulrich Trunk HPAD Meeting Hamburg 07.-08.04.2007

2,5

2

2,5

DGNMOS & ZVTDGNMOS

NMOS 0,7 2,00E-04 1,80E-04 0,6 1,60E-04 0.5 1,40E-04 1,20E-04 0,4 Vth [V] 1,00E-04 DGNMOS Vth 0.3 Ż 8,00E-05 VTDGNMOS Vth DGNMOS K' 6,00E-05 0,2 ZVTDGNMOS K 4.00E-05 0,1 2.00E-05 0,00E+00 0 0.00E+00 2.00E+07 4,00E+07 6,00E+07 8.00E+07 1.00E+08 Dose[Gy]

ZVTDGNMOS •V_{th} =0.06V @ 0Gy • $V_{\rm th} = 0.13 V$ @ 100MGy •K=147µa/V² @ 0Gy •K=86.8µa/V2@ 0Gy DGNMOS •V_{th} =0.46V @ 0Gy • $V_{\rm th} = 0.59 V$ @ 100MGy •K=177µa/V² @ 0Gy •K=100µa/V² @ 0Gy

HELMHOLTZ

Summary

- Any Cap will do!
 - Results are dominated by P-N junction leakage
 - No known mechanism for radiation-induced oxide leakage
- FETs
 - DGPMOS usable to \approx 1MGy(...10MGy)
 - DGNMOS to \geq 100MGy
 - ZVTDGNMOS to \geq 100MGy
- Cooling helps!
 - Cooling from 20°C to –30°C reduces leakage by \approx 46%

For details see test report

