Science Requirements and Sensor Update

Guillaume Potdevin

4th XDAC Meeting, 13-15 Oct.

Science requirements: Available tools for simulations

Simulation of coherent diffraction pattern
Prototypical images
Scattering of residual gas molecules

Detector simulations
Detector transfer function
Detector impact on reconstruction algorithms

Coherent diffraction simulation

- Compute the contribution of each atom for each pixel
- Sum the intensities (complex)
- ⇒ Map of Most Likely intensities for each pixels (real numbers)
- ⇒ Correct for Solid Angle, Polarization...
- ⇒ Poisson statistics analysis Gives Intensity (integers)
- ⇒ Then Add noise...

Detector simulation model

Monte Carlo approach Charge sharing

Soon Charge explosion

Basic amplifier model +

Charge storage leak

QuickTime™ and a decompressor are needed to see this picture

$$Q_n^2 = \frac{\exp(2)}{8} \left[\left(2eI_d + \frac{4kT}{R_p} + i_{na}^2 \right) \tau + \left(4kTR_s + e_{na}^2 \right) \frac{C^2}{\tau} + 4A_f C^2 \right]$$

Science requirements: Coherent diffraction imaging techniques

Variety of prototypical images

- Simulations (F.Pfeiffer, self made)
- Experimental data (C.Mocuta, I.Vartaniants)

Some work on the photon background simulation

- Simulation of the residual gas scattering
- Need to understand more the contribution of the optics

Phase retrieval algorithms, impact of the detector geometry?

Science requirements: Available prototypical images

Sample	Remark	Contributor
Simulation of Ferritin	Single Mol, 1, 3, 5, crystal units	Pfeiffer, et al.
Simulation of Dwarf Virus	Standalone	Pfeiffer, <i>et al.</i>
Exp. data of nanostructures	Single objects	C.Mocuta, <i>et al.</i>
Oversampled <i>Simulation</i> of biomolecules	Enable study of expected peak shape	Potdevin

Science requirements: Detectors Geometry

• It is evident that we need a central hole. But what size??

Science requirements: Biomolecules

Coherent diffraction imaging techniques

XDAC Meeting, 13-15 Oct

8

Guillaume Potdevin

Science requirements: Nanocrystals

Coherent diffraction imaging techniques

Science requirements: Nanocrystals Coherent diffraction imaging techniques

XDAC Meeting, 13-15 Oct

10

Science requirements: Can we count on the background to help us?

The main sources of photon background are:

- Residual gas scattering ("The scattering of vacuum")
- Inelastic scattering (sample and residual gas)
- Optics imperfection

Science requirements: Residual gas coherent scattering

Simulation of the photon background of a chamber:

- 10m long
- Pressure 10⁻³mBar
- Only H₂O molecules

ie. On average 18 photons on detector.

Science requirements:

Inelastic scattering

Science requirements: Impact of the optics

- Optical elements are probably the strongest source of photon background
 - Surface roughness
 - Slits scattering

Single Ferritin molecule Without optics background

Single Ferritin molecule With optics background

"Trivial attempt" by F.Pfeiffer

14

Guillaume Potdevin

Science requirements:

Detectors Geometry

Science requirements: Detectors Geometry

16

Detector simulation software

