

Capacitor and switch arrays included in the HPAD_0.1 chip and proposed tests

Riccardo Mazzocco DESY/PSI/U-Bonn/U-HH consortium

PAUL	SCHE	RRER	INS	TITUT
	Ξ	Ē	N	
		<u> </u>		

Capacitor and Switch Arrays

Essential requirement leakage currents as small as possible in order to avoid the degradation of stored data (~1fA)

Leakage currents occur • at source and drain nodes of FETs in the sub-threshold region

> through the SiO₂/Si₃N₄ dielectric of capacitors and transistor gates (tunneling electrons)

- Capacitors MIM capacitors
 - Dual MIM capacitors
 - DGN capacitors

Switches • Long DGPMOS Dual DGPMOS

Capacitor Arrays

MIM capacitor array

Single capacitor characteristics:

- Area: 5.24 μm x 5.24 μm
- Capacitance: 59.57 fF
- Number of cells: 8400

Dual MIM capacitor array

Single capacitor characteristics:

- Area: 5 μm x 5 μm
- Capacitance: 680.17 fF
- Number of cells: 876

Capacitor Arrays

MIM capacitor array

Single capacitor characteristics:

- Area: 5.24 μm x 5.24 μm
- Capacitance: 59.57 fF
- Number of cells: 8400

Dual MIM capacitor array

Single capacitor characteristics:

- Area: 5 µm x 5 µm
- Capacitance: 680.17 fF
- Number of cells: 876

Capacitor Arrays

DGN capacitor array

Single capacitor characteristics:

- Area: 5 μm x 5 μm
- Capacitance: 51.1 fF....147.7 fF
- Number of cells: 8880

Length: 5 µm

GATE

TO

1=513 nf=1

NWA

SD

NWB

Switch Arrays

Long DGPMOS array (thick-oxide PMOS)

- Width: 0.36 µm
- Length: 5 µm
- Number of cells: 27060

Dual DGPMOS array (thick-oxide PMOS)

<u>Linear</u>

- W/L_A: 0.36 μm / 0.24 μm
- W/L_B: 0.36 μm / 2 μm
- Area: 8.19 μm x 4.2 μm
- Number: 27060

<u>ELT</u>

- W/L_A: 2.4 μm / 0.24 μm
- W/L_B: 2.4 μm / 0.24 μm
- Area: 7.65 μm x 2.98 μm
- Number: 27060

Switch Arrays

Long DGPMOS array (thick-oxide PMOS)

- Width: 0.36 µm
- Length: 5 µm
- Number of cells: 27060

TICKA CALLAND			35					
						Ň		
	· · · [· [x]		 X			R	•	
	1		£					
			38					
			X					
						5		
			 1					
-444-555-444-			4					
			 R					
03339777533333						ΚN		

Dual DGPMOS array (thick-oxide PMOS)

<u>Linear</u>

<u>ELT</u>

Sampling Cell

Connections which can reduce the leakage:

- N-well connected to the highest potential (V_{DD})
- Unity gain buffer which bootstraps bulk and the intermediate SD node

Measurement Circuit

- Pico-Ammeter
- Voltage source which biases the array

Considerations

- Leakage current due to the oxide leakage
- PSI I/O pads are minimum size ESD structures. Leakage introduced by these pads is unknown

Parameters

-» Temperature (climate chamber)
-» Radiations (before and after irradiation)

Measurement Circuit

- Pico-Ammeter
- Voltage source across sourcedrain

Considerations

■ U_B=0, U_A≥0, U_{gate} as high as possible

Parameters

- -» Temperature (climate chamber)
- -» Radiations (before and after irradiation)
- -» V_{NW}

Measurement Circuit

- Pico-Ammeter
- Voltage source across sourcedrain
- Unity Buffer for enhanced bootstrapping

Considerations

 Buffer introduces an additional power consumption (only if strictly necessary)

Parameters

- -» Temperature (climate chamber)
- -» Radiations (before and after irradiation)

-»
$$V_{NWA}$$
, V_{NWB} , V_{SD}

Sampling Cell: dynamic measurement

- Voltage measurement (V_{out})
- Indirect measure of the leakage

Parameters

- -» Temperature (climate chamber)
- -» Radiations (before and after irradiation)

-»
$$V_{NWA}, V_{NWB}, V_{SD}$$

Conclusions

- The hpad_0.1 chip consists mainly of test structures (MIMCap, DualMIMCap, DGNCap, DGPMOS)
- All these structures will be tested to characterize leakage currents
- Leakage currents can be reduced by means of different connections of the sampling cell pins (bulk effect to decrease sub-threshold currents)
- The proposed leakage measurements are essentially static measurements for each single array and dynamic for the sampling cell