

AGIPD1.0:

Characterization & Calibration

J. Becker², L. Bianco², R. Dinapoli¹, P. Goettlicher², M. Gronewald⁴, H. Graafsma^{2,5}, **D. Greiffenberg¹**, B.H. Henrich¹, H. Hirsemann², S. Jack², R. Klanner³, A. Klyuev², H. Krueger⁴, S. Lange², A. Marras², A. Mozzanica¹, B. Schmitt¹, J. Schwandt³, X. Shi¹, U. Trunk², J. Zhang³

¹Paul-Scherrer-Institut (PSI), SLS Detector Group, Villigen, Switzerland
 ²DESY, HASYLAB Group, Hamburg, Germany
 ³University of Hamburg, Hamburg, Germany
 ⁴University of Bonn, Bonn, Germany
 ⁵Mid Sweden University, Sundsvall, Sweden

Calibration

External: Photons (Bulb, Laser)Internal: Test current source

Characterization

• Chip systematics

Memory cell sweep

Summary

BULB: Dynamic Range

AGIPD1.0 - Chip 1 - Dynamic Range by BULB - (Internal Biasing, Chip clock: 40 MHz, CDS gain LOW)

BULB: Noise

AGIPD1.0 - Chip 1 - Noise over Dynamic Range (x12.4 keV) - Bulb

BULB: Non-linearity

AGIPD1.0 - Chip 1 - Deviation from linear (x12.4 keV) - Bulb

LASER: Dynamic Range

AGIPD1.0 - Chip 1 - Dynamic Range by LASER (IR) - (Internal Biasing, Chip clock: 40 MHz, CDS gain LOW)

Sampling time: 162 ns

LASER: Noise

AGIPD1.0 - Chip 1 - Noise over Dynamic Range (x12.4 keV) - LASER (IR)

LASER: Non-linearity

AGIPD1.0 - Chip 1 - Deviation from linear (x12.4 keV) - LASER (IR)

TEST CURRENT: Operation modes

TEST CURRENT (250): ON during INT

TEST CURRENT (250): always ON

AGIPD1.0 - Chip 1 - Dynamic Range by TEST CURRENT (always ON) - (Internal Biasing, Chip clock: 40 MHz, CDS gain LOW)

TEST CURRENT (250): ON during RST

AGIPD1.0 - Chip 1 - Dynamic Range by TEST CURRENT (ON during RST) - (Internal Biasing, Chip clock: 40 MHz, CDS gain LOW)

+150 ns settling time

TEST CURRENT (250): ON during RST

AGIPD1.0 - Chip 1- TEST CURRENT (248, ON during RST) - Noise over Dynamic Range (x12.4 keV)

TEST CURRENT (250): ON during RST

AGIPD1.0 - Chip 1- TEST CURRENT (248, ON during RST) - Deviation from linear (x12.4 keV)

Digital bit information

???

Characterization

Chip systematics: Pulseheight

Pulseheight (ADC)

ADC response time (ns)

Relative Pulseheight (%)

Chip systematics: Noise & Baseline

Memory cell systematics: Pulseheight

- Memcell: 0.. 224 with mchip012 (dead)
 Memcell: 224.. 352 with mchipDG
- →Only showing results from one Chiptestbox (Rest is measured at this moment)

- Fluorescence: Mo 17.5 keV
- Memory cell variation: ± 1.16 % (rms)

Memory cell systematics: Others

- Baseline shows systematic variations:
- → Row 1 (significantly lower)
- \rightarrow Row 4 (slightly higher)
- → Column 4, 5 (significantly lower)
- \rightarrow ... more tiny baselines variations, depending on display quality

• Noise as pulse height rather homogeneous