

Status Report: Optimization and Layout Design of AGIPD Sensor

Joern Schwandt, Jiaguo Zhang and Robert Klanner

Institute for Experimental Physics, Hamburg University

Jiaguo Zhang, Hamburg University

10th AGIPD Meeting @ PSI 2012

Outline

- Effects of X-ray radiation damage on silicon sensor
- Optimization of pixel layout
- Optimization of guard ring layout
- Open questions
- Conclusions

Effects of X-ray radiation damage on silicon sensors

Effects of X-ray radiation damage on silicon sensors

What are the problems for X-ray radiation hard pixel sensors:

- Breakdown (high electric field) \leftarrow accumulation layer (oxide charges + interface traps)
- Inter-pixel capacitance \leftarrow accumulation layer
- Increase of depletion voltage \leftarrow accumulation layer
- Surface current \leftarrow traps at the depleted Si-SiO₂ interface

N_{ox} used in TCAD simulations

Parameters related to X-ray induced radiation damage (new measurements 2012):

 \rightarrow oxide charge density $N_{ox} \rightarrow \sim$ compatible with previous measurements

 \rightarrow surface recombination velocity $S_0 = I_{surface} / (q_0 \cdot n_i \cdot A_{gate})$

- N_{ox} used in TCAD simulations:
 - $1 \times 10^{11} \text{ cm}^{-2} \leftarrow 0 \text{ kGy}$ $1 \times 10^{12} \text{ cm}^{-2} \leftarrow 10 \text{ kGy}$

$$3 \times 10^{12} \,\mathrm{cm}^{-2} \leftarrow 100 \,\mathrm{MGy}$$

Characterized test structures:

- \rightarrow CiS, <100>, DOFZ, 330 nm SiO_2 + 50 nm Si_3N_4, doping: 7.6 \times 10^{11} cm^{-3}
- \rightarrow CiS, <111>, DOFZ, 360 nm SiO₂ + 50 nm Si₃N₄, doping: 1.1 \times 10¹² cm⁻³
- \rightarrow CiS, <111>, Epitaxial, 335 nm SiO₂, doping: 7.8 \times 10¹³ cm⁻³
- \rightarrow Hamamatsu, <100?>, 700 nm SiO₂, doping: 9.0×10¹¹ cm⁻³

S_0 used in TCAD simulations

Parameters related to X-ray induced radiation damage:

- \rightarrow oxide charge density N_{ox}
- \rightarrow surface recombination velocity $S_0 = I_{surface} / (q_0 \cdot n_i \cdot A_{gate})$ (for T = 20 °C; I ~ T²·e^{-0.6eV/kT})

• S_o used in TCAD simulations: 8 cm/s $\leftarrow 10$ nA/cm² $\leftarrow 0$ kGy 1400 cm/s $\leftarrow 2.0$ μ A/cm² $\leftarrow 10$ kGy 6020 cm/s $\leftarrow 9.0$ μ A/cm² $\leftarrow 5$ MGy

Characterized test structures: \rightarrow CiS, <100>, DOFZ, 330 nm SiO₂ + 50 nm Si₃N₄, doping: 7.6×10¹¹ cm⁻³

- \rightarrow CiS, <111>, DOFZ, 360 nm SiO₂ + 50 nm Si₃N₄, doping: 1.1 × 10¹² cm⁻³
- \rightarrow CiS, <111>, Epitaxial, 335 nm SiO₂, doping: 7.8 \times 10¹³ cm⁻³
- \rightarrow Hamamatsu, <100?>, 700 nm SiO₂, doping: 9.0×10¹¹ cm⁻³

Pixel optimization: strategy

Strategy of pixel optimization (2D "strip sensor" calculation used):

- Optimize oxide thickness, Al overhang, gap and implantation depth with respect to breakdown voltage, dark current and capacitance
- Simple extrapolation to "3D numbers"
- Check breakdown voltage + dark current with 3D simulation (only 1/4 pixel due to number of nodes)

Pixel optimization: oxide thickness + junction depth

Optimization of oxide thickness (200 nm vs. 300 nm):

- Assumption: same value of N_{ox} and S_0 for 200 nm and 300 nm thick SiO₂
- Geometry: $gap 20 \ \mu m$, overhang $-5 \ \mu m$, junction depth -1.2 and 2.4 μm , oxide thickness -200 and 300 nm

- For thinner oxide, the region under the metal depletes at lower voltages
- Thinner oxide: lower max. lateral field strength in Si and $V_{bd} > 1000 V$

→ Maximum breakdown voltage: <u>thinner oxide</u> + <u>deeper junction</u>

Jiaguo Zhang, Hamburg University

All plots show

current/pixel!

Pixel optimization: overhang

Optimization of Al metal overhang:

oxide thickness – 300 nm

• Geometry: $gap - 20 \mu m$, overhang – 2.5 and 5 μm , junction depth – 1.2 μm ,

All plots show current/pixel!

- For irradiated sensor: $I_{surface} \propto W_{dep} (= gap W_{acc})$
- Larger overhang \rightarrow larger current (depleted interface extended to the edge of overhang)
- For an oxide charge density N_{ox} = 3×10¹² cm⁻², breakdown@494 V for both overhang values
 → Overhang > 2.5 μm, no differences in affecting breakdown behavior

 (above 5 μm for tolerance)

Pixel optimization: gap (2D scaled to 3D)

Optimization of gap between p⁺ implants of neighboring pixels:

• Geometry: gap – 20, 30 and 40 μ m, overhang – 5 μ m, junction depth – 2.4 μ m, oxide thickness – 300 nm

• No breakdown up to 1000 V for 2.4 µm deep junction

Pixel optimization: gap (2D scaled to 3D)

Inter-pixel capacitance C_{int} :

Geometry: gap – 20 and 30 μ m, overhang – 5 μ m, junction depth – 2.4 μ m, oxide thickness – 200 and 300 nm

 \rightarrow specification < 0.5 pF/pixel

10th AGIPD Meeting @ PSI 2012

178 fF

218 fF

93 fF

93 fF

Plots show

capacitance/pixel!

Jiaguo Zhang, Hamburg University

30 µm

200 nm

300 nm

77 fF

73 fF

Pixel optimization: 2D vs. 3D

From 2D to 3D simulation:

All plots show current/pixel!

• 3D geometry: $gap - 20 \ \mu m$, overhang $- 5 \ \mu m$, junction depth $- 1.5 \ \mu m$, oxide thickness $- 300 \ nm$ radius of pixel corner $- 5 \ \mu m$ (for simulation – changed to $10 \ \mu m$)

- Qualitatively similar results for 2D and 3D geometry
- Different voltage dependence for 3D: interface below Al depletes at lower voltages

Guard ring optimization: strategy

Problems:

- Same as for the pixels (i.e. high field, surface current...), plus
- 1000 V drop over 1.2 mm for doses between 0 and 1 GGy
- Zero electric field (not depleted bulk) at sensor edge

Strategy of optimization (GR = guard ring):

- 1. 0 GR: optimize breakdown voltage (V_{bd}) vs. junction depth, oxide thickness and metal overhang $\rightarrow V_{bd} \sim 70 \text{ V}$
- 2. 1 GR: verify parameters and V_{bd} from 0 guard ring optimization; determine distance CCR to GR for 1000 V \rightarrow 15 GRs
- 3. Choose metal overhang and distance between GRs to achieve equal voltage drop between GRs
- 4. Check dependence of CCR current and breakdown voltage on design parameters

Guard ring optimization: 0 GR

Optimization of SiO₂ thickness and junction depth for 0 GR:

• Geometry: Al overhang – 5 μ m, CCR implant width – 20 μ m (for simulation – changed to 90 μ m)

- For $N_{ox} < 1 \times 10^{12}$ cm⁻², thicker oxide (i.e. 500 nm) better
- For $N_{ox} = 3 \times 10^{12}$ cm⁻², optimum value: 230 nm (1.2 µm junction), 270 nm (2.4 µm junction)

 $\rightarrow \sim 250 \text{ nm SiO}_2 \text{ thickness and } 2.4 \text{ } \mu\text{m junction depth optimized for high doses}$ $\rightarrow \text{Al overhang} > \sim 3 \text{ } \mu\text{m} \rightarrow \text{choose 5 } \mu\text{m for tolerances (optimization not shown here;}$ Al overhang only towards sensor edge important)

Guard ring optimization: results

Optimized design (CCR with 15 floating GRs):

- Break down voltage for 1 ring with $N_{ox} = 3 \times 10^{12} \text{ cm}^{-2}$: ~ 70 V
- Ideally 16 rings (1 CCR + 15 g.r.) needed for 1000 V (16×70 V = 1120 V)
- Geometry of guard ring structure:
 - Gap pixel to CCR: 20 µm - Width implantation window CCR: 90 µm 100 Distance from the last pixel to the edge of the sensor: 1200 um - Al overhang CCR: 5 µm - Gap CCR to 1st guard ring (GR): 12 µm line for 2D simulation - Width of implantation window GR 25 µm • Al overhang left (towards pixel) of GR 1, 2, ... 15: 2, 3, ... 16 µm (155,-70) • Al overhang right (away from pixel) of GR 1 - 15: 5 μ m • Gap between GR 1-2, 2-3, ... 14-15: 12, 13.5, ... 33 µm **Bulk resistivity:** - 5.1 k Ω ·cm (and 3, 8 k Ω ·cm to check effects of possible range) p⁺ implantation: - 5×10^{15} cm⁻² B, junction depth: 2.4 μ m, lateral extension: 2 μ m - (5×10¹⁵ cm⁻² B@70 keV through 200 nm SiO2; 4h @ 1025°C) Oxide and passivation: line for quasi 3D - SiO2 field thickness: 250 nm simulation Sensor edge after cutting - Oxide charge before irradiation: 5.0×10^{10} cm⁻² - Oxide charge after irradiation: 3.0×10^{12} cm⁻²
 - Surface current density after irradiation: 9 µA/cm²
 - Passivation: not simulated

- Si₃N₄: not simulated

- Surface current density before irradiation: 10 nA/cm²

٠

Guard ring optimization: verification

CCR current for optimized design:

- From 2D, no break down up to 1000 V for $N_{ox} = 3 \times 10^{12}$ cm⁻²
- Quasi 3D (r, z) shows a breakdown voltage of about 900 V

- \rightarrow 2.4 μm (deeper) junction is possible to achieve high breakdown voltage!
- breakdown voltage at corners ~ 900 V for $N_{ox} = 3 \times 10^{12} \text{ cm}^{-2}$
- total current ~ 10 μ A = 3 μ A (CCR) + 7 μ A (pixels) at 900 V for N_{ox} = 3×10¹² cm⁻²

Guard ring optimization: verification

CCR current for 1.2 µm junction depth:

- 2D: breakdown voltage < 1000 V for N_{ox} > 1 × 10¹² cm⁻²
- 3D: breakdown voltage ~ 550 V for high dose
- Breakdown voltage for 1.2 µm junction:

$$\rightarrow V_{bd} \sim 550 \text{ V for } N_{ox} = 2 \times 10^{12} \text{ cm}^{-2}$$

$$\rightarrow V_{bd} \sim 600 \text{ V for } N_{ox} = 3 \times 10^{12} \text{ cm}^{-2}$$

\rightarrow 1.2 µm junction can not achieve 900 V! (may depend on technology)

Guard ring optimization: verification

Effect of resistivity on depleted region close to the edge:

• High resistivity \rightarrow risk of depletion region touching the edge at low oxide charges

• Effect pronounced for high resistivity (low doping concentration)

 \rightarrow resistivity of 5.1 k Ω ·cm is OK \leftarrow (3.0 - 8.0) k Ω ·cm

Open questions

Factors, not considered, affecting the sensor performance:

- Are assumptions on technology correct?
- Si_3N_4 layer on top of SiO₂
- "Final" passivation
 - \rightarrow boundary condition on sensor surface
 - \rightarrow additional interface layer
 - \rightarrow effect of operating environment of sensor

Summary

AGIPD sensor design based on:

- Radiation damage measurements
- Detailed TCAD simulations

Are we ready to order???

