

Status Report: Radiation Damage and Sensors

Jiaguo Zhang

Institute for Experimental Physics, Hamburg University

J. Zhang, Uni Hamburg

Outline

- Summary on radiation damage
- Short summary on sensor optimization and design
 - optimization of gap, overhang, junction depth, curvature and surface protection
 - design of test structures and sensors
- Overall summary + following work

Summary on radiation damage

MOS capacitor

- Properties of MOS capacitor under study
 - fabricated by CiS
 - orientation: <1 0 0>

- substrate: n-doped silicon
- insulator: 350 nm SiO_2 + 50 nm Si_3N_4

- thickness: $285 \pm 10 \ \mu m$
- resistivity: 5 6 k Ω •cm

- gate area: $1.767 \cdot 10^{-2} \text{ cm}^2$
- doping: 0.7•10¹² cm⁻³ boron
- Procedure to extract microscopic parameters
 - TDRC measurement \rightarrow distribution of interface states density D_{it}
 - C/G-V measurement + model calculation \rightarrow oxide charge density N_{ox}

TDRC spectrum (and distribution of D_{it})

• From TDRC spectrum to properties of 3 dominant interface traps:

• Effective capture cross sections used for 3 interface traps:

	D_{it}^{1}	D_{it}^{2}	D_{it}^{3}
σ _{eff} * [cm²]	1.2x10 ⁻¹⁵	5x10 ⁻¹⁷	1.0x10 ⁻¹⁵

* Cross sections were obtained through comparison of C/G-V curves between measurements and model calculation, with large uncertainties.

J. Zhang, Uni Hamburg

Simple model and ideal C/G-V curves

J. Zhang, Uni Hamburg

Model of MOS including interface traps

J. Zhang, Uni Hamburg

C/G-V curves after X-ray irradiation

• C/G-V curves from both measurements and model calculation:

• N_{ox} extracted when model calculation describe measurements.

J. Zhang, Uni Hamburg

Dose dependence of N_{it} and N_{ox}

• Dose dependence of concentration of defects for orientation <1 0 0>:

- N_{ox} and N_{it} saturate at a dose value in between 10 MGy and 100 MGy
- Saturation value of N_{ox} is 2.8 x 10¹² cm⁻²
- Similar results for orientation <1 1 1>
- J. Zhang, Uni Hamburg 9th AGIPD meeting, DESY Hamburg

Orientation dependence: <1 0 0> vs. <1 1 1 >

• TDRC spectrums, C/G-V curves for different orientations:

Short summary on sensor optimization and design

Sensor optimization with TCAD

• Results of simulation (from J. Schwandt @ 8th AGIPD meeting):

Optimized parameter	Main influence on	Conclusion
gap	W _{acc} (I _{leakage} , C _{int})	smaller gap preferred
metal overhang	W _{acc} (I _{leakage} , C _{int}), V _{bd}	≥ 2 µm
junction depth	V _{bd}	as deep as possible [Canberra: 0.5-0.8 μm; CiS: 1.0-1.5 μm]
curvature	V _{bd}	smooth
insulator	radiation induced charges at interfaces [Si-SiO ₂ ; SiO ₂ -Si ₃ N ₄]	SiO_2 ? [Canberra: 100 / 180 nm SiO_2 ; CiS: 200 / 350 nm SiO_2 + 50 nm Si_3N_4]
surface protection	W _{acc} , Charge losses	higher conductivity? [Canberra: 500 nm SiO ₂ ; CiS: ~1 μm SiON]

J. Zhang, Uni Hamburg

Sensor design and test structures

- pad diodes

- gated diodes

- 16 x 16 test sensors

- "AC" coupled strip sensors

- Sensors:
 - 64 x 64 single chip sensors
- Test structures:
 - DC coupled strip sensors
 - test alumina strips
 - MOS capacitors
 - PMOSFETs
- Status of sensor fabrication:
 - submitted to Canberra and VTT
 - long delay of fabrication from Canberra due to existing wafer problem (production of wafer can not be finalized before the beginning of March, 2012)
- Go to and discuss with other vendors: Hamamatsu? CiS? ...

Overall summary + following work

Overall summary

Radiation damage

- 3 dominant interface traps D_{it}^{n} after irradiation \rightarrow parameters extracted
- C/G-V measurements can be described by D_{it}^{n} and N_{ox}

interface trap density + fixed oxide charge density as function of dose saturation with dose similar dose dependence of for <1 0 0> and <1 1 1> but <1 0 0> seems to be more radiation hard compared to <1 1 1> (tentatively)

Sensor optimization and design

- optimized parameters proposed
- designed sensors and test structures submitted to Canberra and VTT

Following work

Develop more dedicate algorithm and well define capture cross sections for traps

Extend measurements to sensors/test structures with different materials (Epi & DOFZ) and from different vendors (Hamamatsu & Canberra)

Implement parameters into TCAD and compare simulation results to the measurements of segmented sensors

Discuss with other vendor for sensor fabrication

Thanks for your attention!

J. Zhang, Uni Hamburg