

Sensors

Previous meeting:

- Optimization of guard ring structure for 1000 V n⁺np⁺-sensor including surface radiation damage effects
- Generic simulation of n⁺n-cells

Little work on sensor design done since!

- → need to agree on specifications, in particular:
- type and doping concentration
- thickness
- maximum voltage
- biasing scheme
- maximum dark current and coupling scheme
- exact pixel geometry and inter-pixel parameters (C/R)
- dead regions at corners
- technology and (tentative) vendor
- etc

How to agree ?

working party (experts for science \otimes sensor \otimes electronics \otimes layout \otimes experience at SR-sources \otimes ???

An attempt at this meeting ???

Sensor Specifications

parameter	value	comments
dimensions	x·x mm²	mounting, test experiments
thickness	500-700 μm	U _{dep} , plasma effects, shielding, efficiency, science
material/diode type	p ⁺ on n	h-collection, plasma effects, pulse shape
doping	3-5 kΩ·cm	U _{dep} , plasma effects
doping uniformity		charge collection distortions
pixel dimensions	200·200 μm	electronics, science
$\mathrm{U}_{\mathrm{max}}$	1000 V	mounting, pulse shape, dead space at edges
pad layout		bump bonding, capacitance
biasing scheme		detector tests
coupling type	DC	bias current correction
inter-pixel capacitance		noise, cross-talk, avalanche breakdown, U _{operation}
total dark current	2 μΑ	detector technology ok
max. dark current/pixel	50 nA	noise, uniformity
passivation	SiO ₂ , (Si ₃ N ₄)	irradiation, environmental effects
dead region at edges		dead space for science