Update on Science requirements Noise behavior analysis

AGIPD meeting

Guillaume Potdevin PSI, 15/09/09

Content

> Noise budget analysis

Noise budget analysis

Static noise (no photon noise) Dynamic noise (as function of intensity)

(few) Calibration considerations

> Dose Predictions

- Predictions
- Dose on HPAD 0.1

> Science requirements:

• CDI

Intensity distribution within the pixel / peak width

XPCS

Small pixel version of the AGIPD Pixel masking option

- Background simulations
- 2nd detector

Two cases to consider:

- > 0 intensity noise ie. *False hits*
 - <u>HAS TO BE 0</u>

- > N photons intensity response spread
 - Must be <u>smaller than the intrinsic signal fluctuations</u> (poisson)

Noise budget analysis: False hits

Contributions:

- > Sensor Leakage. If assuming
 - 100nA/cm³ so **1pA per pixel**
 - $\Rightarrow \sim \underline{1 \text{ electron /pixel/picture}}$
- > Amplifier noise
 - <u>150 electrons /pixel/picture</u>
- > Analog pipeline storage
 - No number so far...

So for 1750 electrons signal • 5 σ ie. Luxury <u>Noise_{Analogue_Pipeline} < 305 electrons</u> • 3.5 σ Minimal, ⇔ ~ 1 false hit/picture <u>Noise_{Analogue_Pipeline} < 470 electrons</u>

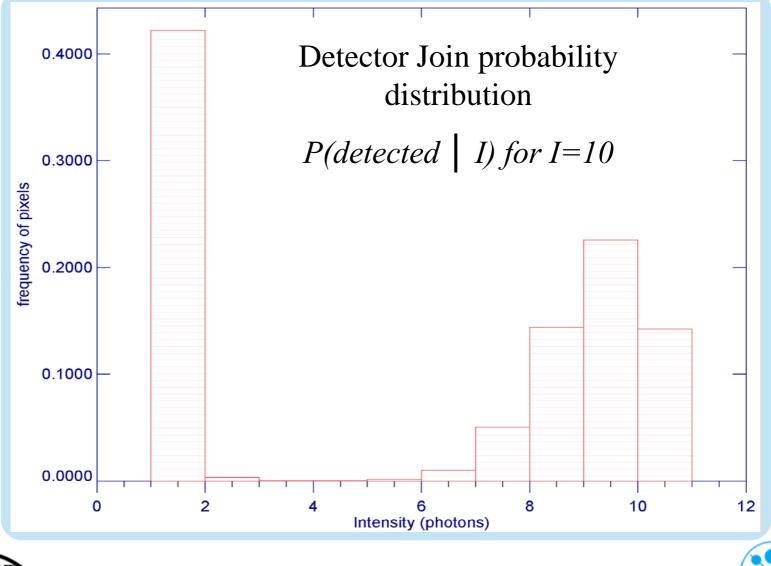
> ADC converter

- 4.6LSB / 14bit
- Dynamic range Amplifier: **1V**

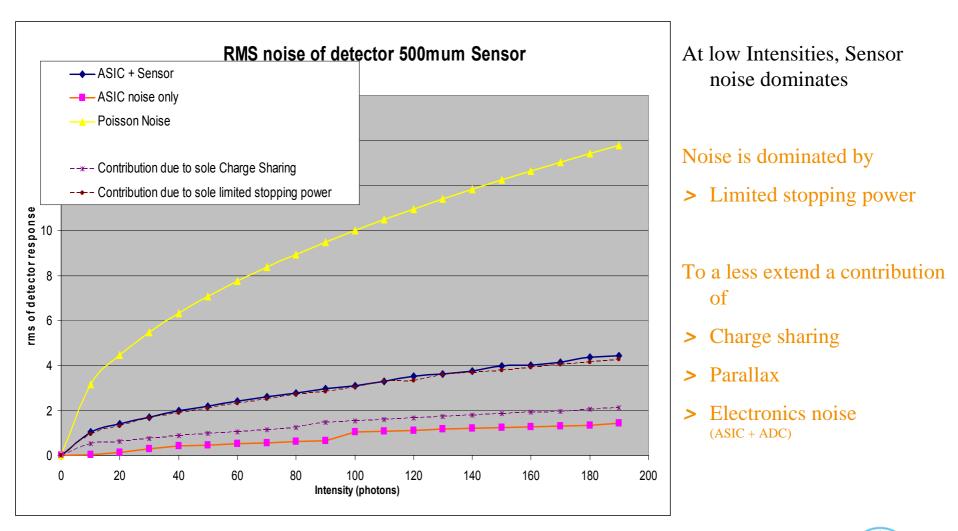
⇔4.6/195*3300
⇔ 77 electrons

- > N photons intensity response spread
 - Measured as:

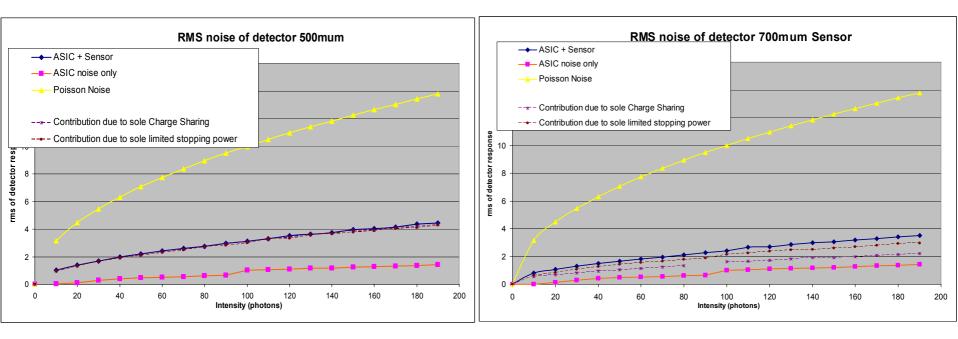
$$\sigma_{det} = \sqrt{\frac{1}{N-1} \sum_{N \text{ pixels}} \left(I_N - \overline{I_{output}} \right)^2}$$


- Must be smaller than the intrinsic signal fluctuations (Poisson)
- Mostly a consequence of the sensor imperfections

(charge sharing, parallax, limited quantum efficiency, etc...)



Example Detector response spreading to 10 photons Intensity



In photons unit (for electrons @12keV, multiply by 3300)

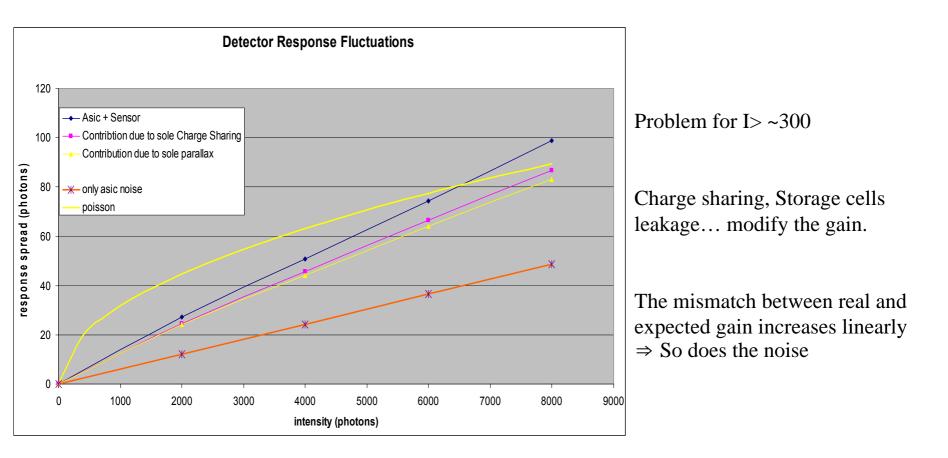
Noise budget analysis: 500µm vs. 700µm

Same noise behaviour:

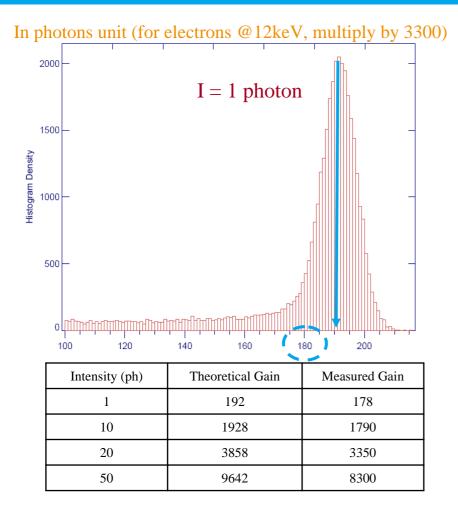
- > Loose on the Charge sharing side, but gain on the Quantum Efficiency
- > Decision should be driven by Transient noise analysis and Pulse shape considerations See nice talk by Julian Becker

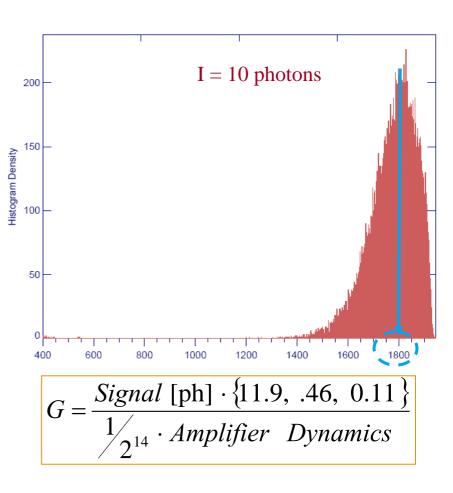
> For ASIC:

- Hard constrain to keep false hits low. σ < 350 e⁻
- For I > 1 should not be a problem
- Transient noise is an issue
- *Memory effect* are an issue
 Can be limited by taking pictures every 400ns for example

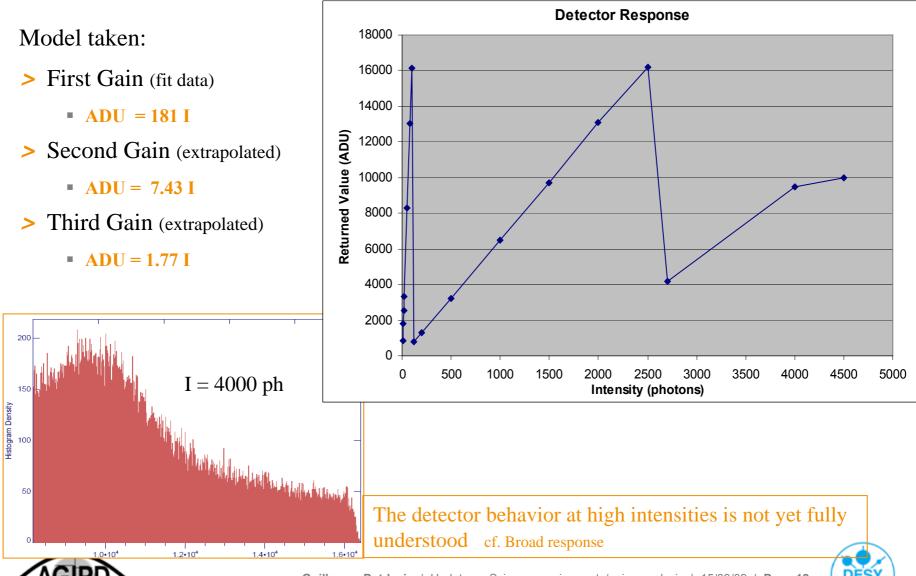

> For Sensor:

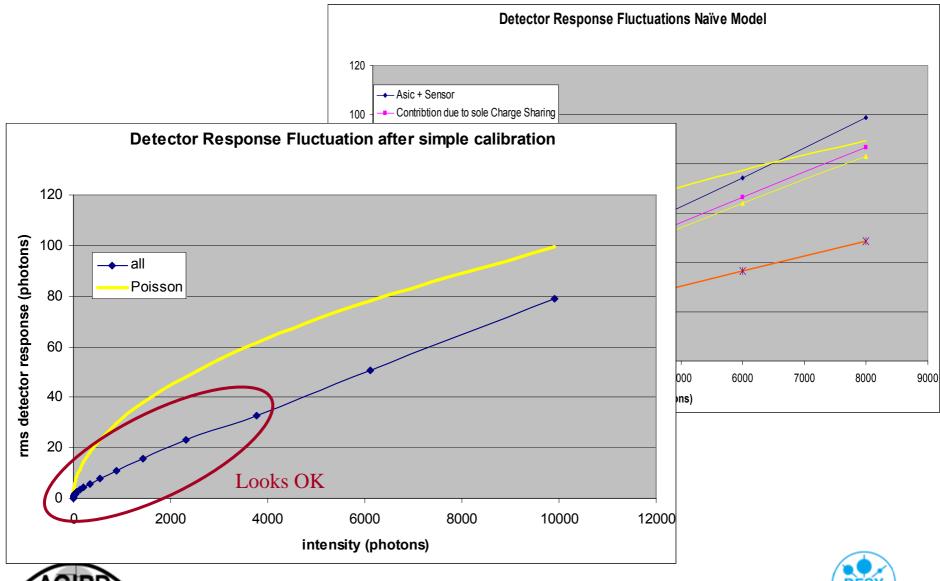
• $700\mu m / 500\mu m$ is equivalent as of the scientific point of view


In photons unit (for electrons @12keV, multiply by 3300)



Detector calibration: Gain correction


Gain (ADU/photons)	192	linear
-----------------------	-----	--------


Detector calibration: Gain correction

Guillaume Potdevin | Update on Science requirements/noise analysis | 15/09/09 | Page 12

Detector calibration: Calibrated detector response fluctuations

> Energy Calibration

Radioactive source

- > Voltage Droop
 - Internal to ASIC?

> Gain Calibration

- Internal to ASIC?
- Using flat field, and statistics fluctuations?
- What about high flux??

Reminder of last time

Noise is an acceptable fact within some limits. Calibration is what matters "Better a noisy but well calibrated detector than a good poorly calibrated detector"

Ultimate Information is the Joint probability distribution:

- X is the True Mean Count ~ "Intensity" and its associated "Statistics" (eg. Poisson)
- Y is the Actual Detector Count

P(X,Y) is the statistical distribution of the detector response for X.

P(X,Y) is explicitly written in the reconstruction algorithm.

> Horus can do this if we have the real detector parameters ie. a good calibration data set

Content

> Noise budget analysis

Noise budget analysis

Static noise (no photon noise) Dynamic noise (as function of intensity)

• (few) Calibration considerations

> Dose Predictions

- Predictions
- Dose on HPAD 0.1

> Science requirements:

• CDI

Intensity distribution within the pixel / peak width

XPCS

Small pixel version of the AGIPD Pixel masking option

- Background simulations
- Second detector

Dose expected

> Still a moving target. Will depend on:

- Quality of particle injectors
- Size of samples being studied
- Up time of the experiments / beamtime

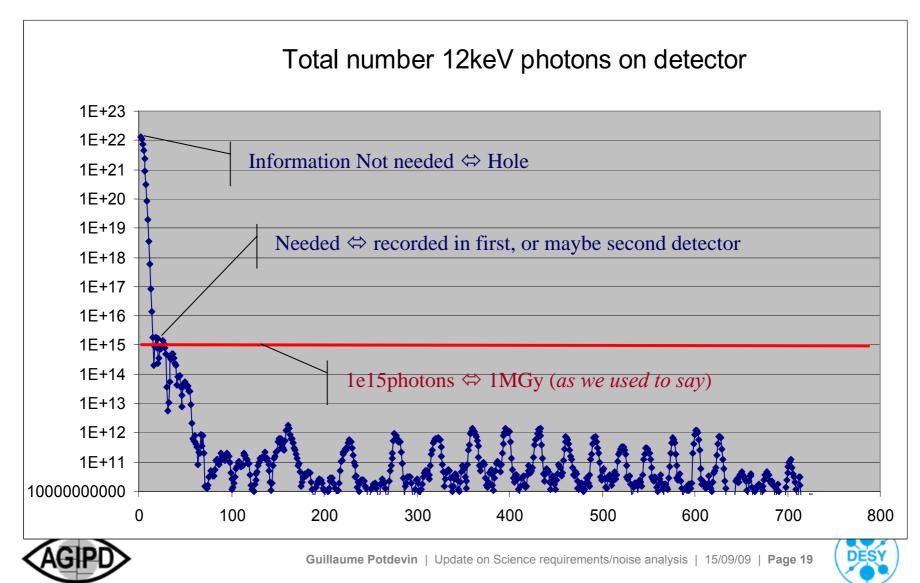
➤ Following calculations made considering the ferritine 5x5x5 nano crystal which gives already a strong signal ⇔ good SNR.

> How do you measure/calculate a dose with photons ???

- Here only the number of photons infringing
- There was a calibration problem in the **HPAD 0.1** dose measurements

> Some assumptions:

Pixel Number	Pix Intensity/Shot (photons)	Background photons	days in 3 years * Machine availibility	uptime hours/days	shots /hour	experiment efficiency (hit/miss)	Photons on sample	Energy on sensor
	From Ferritine 5x5x5	From simulations	0.8 * 3 * 365	0.7 * 24	1e3 * 60 * 60	8.00E-01	C9*D9*E9*F9 +B9*G9*D9* E9*F9	H9 * 12keV * 1.6e-19
1	3.00E+10	1.591596371	876	16.8	36000000	0.8	1.27E+22	2.44E+07
2	2.60E+10	0.795798186	876	16.8	36000000	0.8	1.10E+22	2.12E+07
3	1.80E+10	0.530532124	876	16.8	36000000	0.8	7.64E+21	1.47E+07
4	1.08E+10	0.397899093	876	16.8	36000000	0.8	4.56E+21	8.76E+06
5	5.56E+09	0.318319274	876	16.8	36000000	0.8	2.36E+21	4.53E+06
6	2.16E+09	0.265266062	876	16.8	36000000	0.8	9.14E+20	1.75E+06
7	7.08E+08	0.22737091	876	16.8	36000000	0.8	3.00E+20	5.76E+05
8	2.01E+08	0.198949546	876	16.8	36000000	0.8	8.53E+19	1.64E+05
9	4.44E+07	0.176844041	876	16.8	36000000	0.8	1.88E+19	3.61E+04
10	8.39E+06	0.159159637	876	16.8	36000000	0.8	3.56E+18	6.83E+03
11	1.40E+06	0.144690579	876	16.8	36000000	0.8	5.91E+17	1.14E+03
12	198191	0.132633031	876	16.8	36000000	0.8	8.40E+16	1.61E+02


Optimistic for experiment / **pessimistic as of dose**

Dose expected nb photons expected

> Plotted

Some mistake was made during the calibration of the dose absorbed by the ASIC

- > 250µm Si were considered for Absorption of light instead of ASIC thickness
- > The spectrum considered (doris BM –filtered) is harder than the XFEL beam

 $\Rightarrow The dose received by HPAD 0.1 has to be diminished by$ <u>a factor 20</u> to scale with real XFEL experiments

The flux calibration could not be recalculated, but was cross-checked with a PIN diode during measurement,

So should be good.

Content

> Noise budget analysis

Noise budget analysis

Static noise (no photon noise) Dynamic noise (as function of intensity)

• (few) Calibration considerations

> Dose Predictions

- Predictions
- Dose on HPAD 0.1

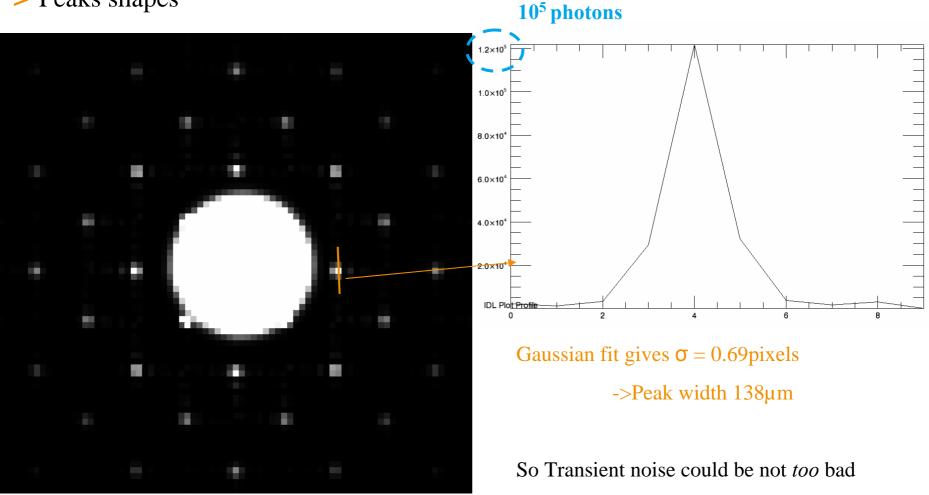
> Science requirements:

CDI

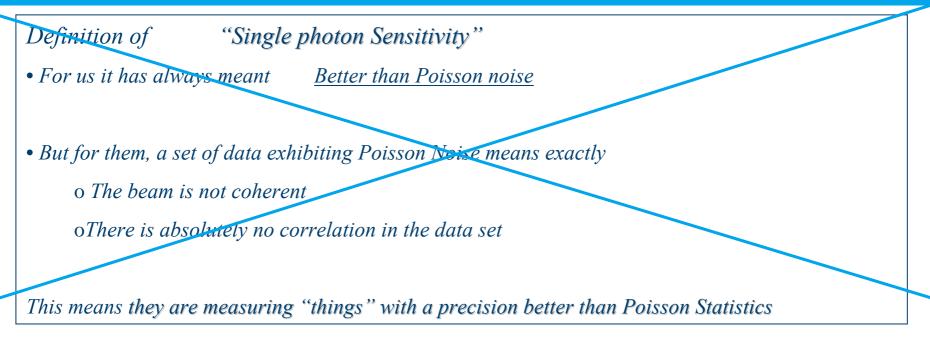
Intensity distribution within the pixel / peak width

XPCS

Noise requirements Pixel masking option Small pixel version of the AGIPD


- Background simulations
- Second detector

Coherent Diffraction Techniques

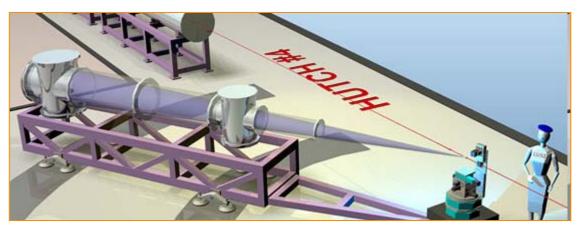

> Peaks shapes

XPCS requirements Noise requirements

Depending on the measurement regime, the signal will exhibit

- > Poisson Statistics
- > Negative exponential statistics

> XPCS experiments do **NOT** need

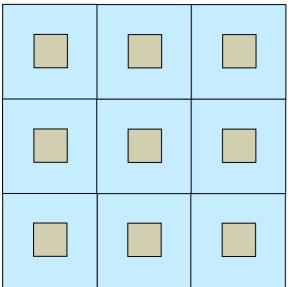

- Large dynamic: <10² would be fine
- Many stored pictures ~80 would be fine

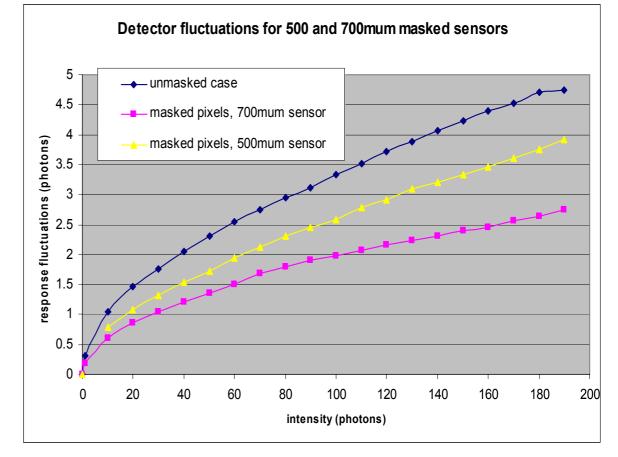
> But they **DO** need

- Small pixels <80µm</p>
- Low AND high q information Move detector in 2Θ

> Would *love* to

Get Peak shape


XCS setup @LCLS One arm rotates in 2Θ



XPCS requirements: Case of masked pixels

Mandatory solution if no small pixels

Noise_{masked} ~ 2/3 Noise_{normal} Signal_{masked} ~ 1/4 Signal_{normal} SNR_{masked} ~ SNR_{normal} / 3

We also loose $\frac{3}{4}$ of the signal \Rightarrow SNR is reduced by factor 3

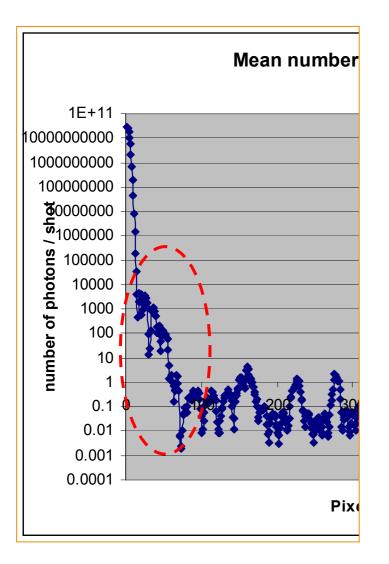
Loose the ability to get peak shape

Background Simulation

Background was evaluated:

- > Scattering by residual gas is negligible
- > Scattering by optics can reach several photons per pixels depending on the scenario:
 - Distance to optics
 - Surface finishing
 - Number of optics elements

Conclusion, does not impact us


Can be a problem for Data compression (no zeros)

Can be a major issue for application scientists!

Second detector

Need to record low q information

- Must have a large pipe through the readout electronics
- > Will suffer from radiation damages
- > It is not clear whether an absorber can be used.
 - Wave front preservation
 - No single photon sensitivity
 - ... ??

