

HPAD 0.2 Submission - Bonn

H. Krüger

Overview

- Motivation
- Implemented structures (test chip including 4 different developments)
 - switch test structures
 - 8 cell analog pipeline
 - I²C interface (not connected to the above)
 - tripple-well nfet (*nfettw*) test structures
- Pipeline issues
- General remarks

Motivation

- HPAD 0.1 switch test structures all *DGPFET* (thick gate oxide, 2.5V, reg. Vt)
- favorite device because:
 - no gate leakage
 - low off-current
 - sustain higher dynamical range (2.5V instead of 1.5V)

But, too bad:

- HPAD 0.1 irradiation results showed high V_{th} shift (< 700mV after 10MGy)
- Unless dose rate effect is not significant (is it?) we cannot use this type of transistor

- charge up the sampling capacitor within 200 ns sampling time
- store the voltage during 100ms (worst case) hold time
- do both with an error of less than 0.1% (1%)

settling time constant: $C_{s} \cdot r_{ON} = 28ns$ (43ns) hold time constant: $C_{s} \cdot r_{OFF} = 20s$ (2s)

```
→ ratio r_{ON}/r_{OFF} = 7 \cdot 10^8 (4 \cdot 10^7) !
```


Differences HPAD 0.1 $\leftarrow \rightarrow$ HPAD 0.2

On HPAD 0.1 there were two different type of structures to study device leakage

- 1. devices arrays (switches and capacitors)
 - many devices in parallel to make ultra low current measurements feasible (O(1000) devices, sub pA per device)
 - measure dc currents (V-I curves)
- 2. sampling cells
 - combination of switch, capacitor and buffer
 - measure (time dependent) voltage drop on sampling capacitor

New switch test structures are implemented as sampling cells

- DGNCAP capacitors (showed negligible leakage current on HPAD 0.1)
- Zero-VT DGNFET source follower
- different **PFET** (thin gate oxide) switch configurations

HPAD 0.2 Switch Test Structures

- Sampling cells, 8 variants:
 - all **LPPFET** (low power, high V_T):
 - single (w/o M2) or dual switch configurations
 - W/L variations
 - enclosed and linear
 - 6µx6µ DGNCAP (≥200fF, non-linear!) capacitor

Cell #	Enc.	D/S	V_{THR}	W/L	NWELL	SD	Comments
1	Y	S	LP	2.24/0.12	external	-	W _{min} = 2.24 for enc. layout
2	Y	S	LP	2.24/0.24	external	-	
3	Y	S	LP	2.24/0.36	external	-	
4	N	S	LP	0.32/0.12	external	-	
5	N	S	LP	0.64/0.12	external	-	
6	N	S	LP	0.64/0.24	external	-	
7	N	D	LP	0.64/0.12 (both)	external	external	
8	N	D	LP	0.64/0.12 (both)	-	-	$V_{SD} = V_{NWELL}$

HPAD 0.2 Switch Test Structures

Towards the Analog Pipeline

- Analog memory test structure
 - 8 sampling cells
 - based on type 8 cell
 (dual switch, linear *lppfet*, W/L = 0.64/0.12)
- Modifications
 - added **bottom plate switch** for all cells
 - V_{SD} floating
 - One cell with buffer at capacitor node
 - small digital part to generate control signals

Charge injection

- hard to compensate off-line if signal dependent
- can be reduced to constant offset if switch source node sees a (low impedance) constant voltage
- ightarrow add **bottom plate switch**
- Write sequence
 - insert delay between top- and bottom plate switch off transition (switch off bottom first)
- Read sequence
 - switch bus line to fixed potential (pre-charge V_{PRE})
 - switch on top plate first
- KT/C noise ($C_s = 200 \text{ fF}$): $Vn_{kT/C} = 100 \mu V$

8-Cell Analog Pipeline Test Structure

Analog Pipeline Test Structure - Layout

Analog Memory Cell – Layout Issues

Not area optimized!

- 200fF capacitance (6μ · 6μ DGNCAP)
- dual linear top plate switch (PFET)
- single enclosed bottom plate switch (NFET)

Estimation for optimized layout

- with DGNCAP (~10 $fF/\mu m^2$):
 - $10\mu \cdot 7\mu$ overall
 - − 400 cells \rightarrow (167µm)²
 - need layout area for CSA, dig. control, dig. pipeline, buffer etc...
- with *MIMCAP* (4.5*fF*/μm²): 12μ · 8μ (cap only!)
 - still dominated by cap. area
 - no common bottom plate, low density layout rules for MIM layers
 - − 400 cells \rightarrow (195µm)²
 - need to share layout area with C_F !

- Write voltage, read voltage
 - voltage follower at the output, easy to implement
 - C_s does not have to be linear (use of *DGNCAP* ok)
 - read: sampled charge re-distributes on bus capacitance C_{PAR} and C_S
 - C_S >> C_{PAR} otherwise signal loss due to capacitive charge division
 - signal division tolerable?
- Write Voltage, read charge
 - CSA as output driver
 - output signal (almost) independent of C_{PAR}
 - needs linear C_s (*MIMCAP*)
- Write Charge, read charge
 - possible but more complicated switching sequence

Preparation of 16 x 16 pixel matrix design

- input dynamic range: $V_{MIN} > V_{THR}$ (~0,5V, low power pmos switch)
- pixel driver: voltage buffer or CSA (switched capacitor, differential?)
- digital pipeline \rightarrow same as analog with smaller capacitor
- digital blocks
 - in-pixel control: memory cell select, write/read clocks
 - pixel selection: row/column select
- number of storage cells
- floorplan!

- A lot of measurement data of the HPAD 0.1 test structures has been produced
 - switch and capacitor arrays \rightarrow parametric V-I curves
 - still some issues: are they (self) consistent?
 - conclusions?
- What is missing
 - DGNCAP pre- and after irradiation (capacitance and leakage)
 - results from OPA and alternative storage structures
- What about radiation with more realistic dose rates?
- General chip design issues
 - What is the status of the design of a radiation hard standard cell library?
 - What about enhanced pcells fo enclosed fets (with added RX contacts)
 - fix bug in ASSURA extraction for enclosed layouts
 - Does anybody has experience with HERCULES LVS/DRC
- Leakage performance of the non-irradiated switch still not shown
- rad-hard 'zero leakage' switch seem almost impossible → active compensation will help, but needs power and area

