

Status Report on the Analysis of Radiation Damage for X-Rays in Silicon

E. Fretwurst¹, F. Januschek¹, R. Klanner¹, H. Perrey¹, I. Pintilie², F. Renn³, A. Srivastava¹

¹ Institute for Experimental Physics, University of Hamburg ²National Institute of Materials Physics, Romania ³Summerstudent at DESY, University of Heidelberg

and lots of help from DESY: H. Graafsma, A. Rothkirch, T. Wroblewski

07. October 2008, meeting of the HPAD [C](#page-0-0)[on](#page-1-0)[sor](#page-0-0)[ti](#page-1-0)[um](#page-0-0) [a](#page-2-0)[t](#page-0-0) [P](#page-1-0)[S](#page-2-0)[I](#page-0-0)

 Ω

- 3 [Analysis of Radiation Damage in Gate-Controlled Diodes](#page-7-0)
- **[Simulation of Gate-Controlled Diodes](#page-16-0)**
- **[Next Steps](#page-20-0)**
- **[Summary and Outlook](#page-24-0)**

KERKER ELEMBA

 \leftarrow \leftarrow \leftarrow

4 0 8

[Introduction](#page-2-0)

- [Irradiation and Measurement Set-Up](#page-4-0)
- 3 [Analysis of Radiation Damage in Gate-Controlled Diodes](#page-7-0)
- **[Simulation of Gate-Controlled Diodes](#page-16-0)**
- **[Next Steps](#page-20-0)**
- **[Summary and Outlook](#page-24-0)**

4 0 8

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{B} \cap \mathcal{B}$

Specifications at the XFEL

• integrated photon fluxes up to $10^{12} \gamma$ pixel $\hat{=} 10^9$ Gy $[10^9$ J/kg]

• photon energies of $E_\gamma \approx 12 \,\text{keV}$

Possible effects on detectors and electronics

- **•** no bulk damages: only to be expected at energies $E_γ ≥ 300 \,\text{keV}$
- \bullet charge build-up at the oxide and Si-SiO₂ interface:
	- \Rightarrow shift of flatband voltage V_{th}
	- \Rightarrow high fields (danger of breakdown)
- damage at the interface causes dark current and leakage of storage capacitors

All detectors and electronics will have to be tested for radiation hardness

 Ω

KONKAP KABIKA BI BI BI

[Irradiation and Measurement Set-Up](#page-4-0) • [Irradiation Setup at DORIS](#page-5-0) • [Measurement Setup in the Detector-Laboratory](#page-6-0)

3 [Analysis of Radiation Damage in Gate-Controlled Diodes](#page-7-0)

- **[Simulation of Gate-Controlled Diodes](#page-16-0)**
- **[Next Steps](#page-20-0)**
- **[Summary and Outlook](#page-24-0)**

 Ω

Irradiation Setup in Beam F4 at DORIS

• Beam properties

- **I** typical energy: 10 keV
- ▶ spot-size: $2 \text{ mm} \times 5 \text{ mm}$
- \blacktriangleright dose rate 0.5 150 kGy/s $(in SiO₂)$
- Installation properties
	- \blacktriangleright samples easily exchangeable
	- \blacktriangleright motor allows larger structures to be scanned with beam
	- \blacktriangleright watercooled to 20 $^{\circ}$ C
	- \triangleright set-up movable to other locations

Current status

- DORIS is operational again
- • setup at beamline is being returned to previous state

Measurement Setup in the Detector-Laboratory

- Samples are connected either
	- \triangleright via probe station, or
	- \blacktriangleright via mobile box
- Measuring C/V and I/V curves together with sample temperature
- Mobile box is temperature controlled
- Measurements and data taking are PC-controlled

 Ω

 \mathbf{A} and \mathbf{B}

[Irradiation and Measurement Set-Up](#page-4-0)

3 [Analysis of Radiation Damage in Gate-Controlled Diodes](#page-7-0)

- **[Test Structures: Gate-Controlled Diodes](#page-8-0)**
- [C/V and I/V Measurements](#page-9-0)
- **•** [Extracting Interface Properties](#page-12-0)

[Simulation of Gate-Controlled Diodes](#page-16-0)

[Next Steps](#page-20-0)

[Summary and Outlook](#page-24-0)

 Ω

Test Structures: *Gate-Controlled Diodes*

Properties

- 5 aluminium gate rings
- 280 μ m thick
- high resistivity ($\rho \approx 3.4 \text{ k}\Omega \text{cm}$)
- • 380 nm isolation layer (consisting of $SiO₂ + Si₃N₄$) between gates and n-bulk

C/V and I/V Measurements

LCR meter **ox I -60 -40 -20** AD A B A A B A B B A Q A

Hanno Perrey (Uni Hamburg) [Radiation Damage for X-Rays in Si](#page-0-0) **HPAD Meeting 10/2008** 10/26

Results: Dose Dependence of MOS-Capacitance

K 로 K K 로 K 로 로 - 9 Q @

4 0 8 \leftarrow \leftarrow \leftarrow

Results: Dose Dependence of *Nox* and *Iox*

• decrease not caused by temperature induced [an](#page-10-0)[ne](#page-12-0)[a](#page-10-0)[lin](#page-11-0)[g](#page-12-0)

Capacitance Measurements and Interface Traps

- **•** Irradiated diodes show strong frequency dependence
	- \triangleright caused by presence of interface states N_{it}
- Shift of curves to higher gate voltages is caused by both
	- **•** charges in the oxide (N_{ox}) and
	- \triangleright charges at the interface (N_{it})
- \Rightarrow *N_{it}* strongly effects $V_{th}!$

Measuring Position of Interface Traps in Band Gap

Receipe for measuring the Thermally Stimulated Current (TSC)

- **1** Cool down with MOS biased in accumulation
- At 30° K switch bias to depletion
	- \blacktriangleright stored charge is frozen
- Heat sample up with constant heating rate in depletion
	- \blacktriangleright Fermi level scans band gap
	- \blacktriangleright charges are emitted
	- \blacktriangleright measure current and temperature

Extract density of interface states *Dit* (from current) and capture cross section σ σ σ σ σ (from depen[den](#page-12-0)[c](#page-14-0)[e](#page-12-0) [o](#page-13-0)[n](#page-7-0) [h](#page-11-0)e[at](#page-16-0)ing [r](#page-16-0)a[t](#page-25-0)[e\)](#page-38-0)

First Results From TSC Measurements

Measured TSC signal (*top*)

- Shown is current versus temperature
- **•** for an irradiated 1 MG_y diode
- and for different heating rates

Extracted *Dit* (*bottom*)

Dit versus band gap energy for different diodes at different doses

- very deep levels
- no signal for unirradiated diode
- highest D_{it} for 1 MG_y, decrease of *Dit* with higher doses
- • result of 2nd-order processes leading to electrically inactive defects?

Summary of Experimental Results

[Introduction](#page-2-0)

- [Irradiation and Measurement Set-Up](#page-4-0)
- 3 [Analysis of Radiation Damage in Gate-Controlled Diodes](#page-7-0)
- **[Simulation of Gate-Controlled Diodes](#page-16-0)**
- **[Next Steps](#page-20-0)**
- **[Summary and Outlook](#page-24-0)**

4 0 8

Simulation (I)

Aim

Detailed simulation of sensor including radiation damage effects

Software

Device simulation through IC-TCAD DESSIS (*2D Device Simulation for Smart Integrated Systems*)

Physics models used

- SRH recombination
- **•** Auger recombination
- **•** impact ionization
- **•** surface recombination
- gate current (Lucky) model
- • trap models
	- \triangleright solving Poisson and electron/hole current-continuity equations
	- **If** dependence [o](#page-16-0)f τ on N_i taken i[nt](#page-16-0)o account t[hr](#page-18-0)o[ug](#page-17-0)[h](#page-18-0) τ_{eff} τ_{eff} τ_{eff} τ_{eff} τ_{eff}

Simulation (II)

Procedure

- Design structure in MDRAW
- **Feed results into DESSIS**
- Combine simulation of device (DESSIS) and circuit (SPICE)

Input Parameters

Simulation (III): First Results for G/V-Measurements

Comparison of data and simulation

for an unirradiated diode: frequency dependence of C/V (*top*) and G/V (*bottom*) measurements for two frequencies (10 kHz and 15 kHz) after optimization of parameters $(D_{it}, E_t, N_{ox},$ type of traps,..)

simulation of irradiated diodes

- implemented
- **o** under studies

Hanno Perrey (Uni Hamburg) [Radiation Damage for X-Rays in Si](#page-0-0) **HPAD Meeting 10/2008** 20/26

KEL KAR KIDI KIDI DI DI MAG

[Introduction](#page-2-0)

- [Irradiation and Measurement Set-Up](#page-4-0)
- 3 [Analysis of Radiation Damage in Gate-Controlled Diodes](#page-7-0)
- **[Simulation of Gate-Controlled Diodes](#page-16-0)**

[Next Steps](#page-20-0)

[Summary and Outlook](#page-24-0)

A E RA E RIEL MOON

4 17 18

 \overline{a} \overline{a} \overline{b}

Next Steps (I)

Irradiation/Measurement Setup

- DORIS beam is back so we need to
	- \triangleright return setup to state before DORIS shutdown
	- \blacktriangleright reestablish beam properties
	- \blacktriangleright perform dose calibration
- **o** new substrate with 16 pins
- connections for in-situ biasing and measurement
- optical table for easier changes of irradiation setup
- **•** setup measurement stand at beamline
- improve temperature stabilization

Next Steps (II)

Analysis of present diodes

- **•** for TSC measurements
	- \triangleright extract D_{it} from more (irradiated) diodes
- **•** for CMOS measurements
	- \triangleright improve understanding and modeling of curves to verify results
	- \blacktriangleright study annealing effects
	- \Rightarrow phenomenological model to describe D_{it} and V_{fb} dependency on dose and annealing
- **•** for *I_{ox}* measurements
	- \blacktriangleright understand if structures are suitable
- compare data with measurements of other groups

New data and measurements

- analyze new structures (CMS TS rectangular comb structures)
- \bullet irradiate new diodes and detectors at DORIS
- **•** irradiation for other users

Hanno Perrey (Uni Hamburg) [Radiation Damage for X-Rays in Si](#page-0-0) **HPAD Meeting 10/2008** 23/26

Next Steps (III)

Simulation

- **1** further adjust parameters to experimental C/V and G/V measurements
- 2 proceed with simulation of irradiated diodes
- ³ simulate pixel detector with/without radiation damage and compare to I/V and C/V measurements

[Introduction](#page-2-0)

- [Irradiation and Measurement Set-Up](#page-4-0)
- 3 [Analysis of Radiation Damage in Gate-Controlled Diodes](#page-7-0)
- **[Simulation of Gate-Controlled Diodes](#page-16-0)**
- **[Next Steps](#page-20-0)**

4 0 8

Summary and Outlook

Summary

- D_{it} has been extracted from unirradiated and irradiated diodes
- After steep rise D_i drops with dose
- \bullet *D*_{*it*} effects measured *V*_{*fb*}

Outlook

- **•** Analysis
	- \triangleright compare with theoretical prediction and simulation
	- \triangleright verify observed behaviour of D_i in other diodes
	- \triangleright subtract effects of D_{it} on V_{fb} to extract N_{ox}
- **•** Measurements
	- \blacktriangleright new irradiations possible soon
	- \blacktriangleright study annealing effects
	- \Rightarrow phenomenological model to describe
		- D_{it} and V_{fb} dependency on dose and annealing

KET KALLA BIK KET ELE VOO

[Backup](#page-26-0)

- [Current- and Capacitance-Characteristics of MOS-Diodes](#page-27-0)
- **[Dose Dependence of Surface Current](#page-28-0)**
- **[Conductance Method and First Results](#page-29-0)**
- [Conductance Method: Parallel Conductance](#page-30-0) G_p
- **[Conductance vs. Dose](#page-34-0)**
- [Capacitance and Conductance Corrected for](#page-35-0) *Rbulk*
- [Temperature During Irradiation](#page-36-0) \bullet
- [Detailed Simulation Parameters](#page-37-0)
- [\(Very\) First Results From Model](#page-38-0)

KERKER EE MAA

Hanno Perrey (Uni Hamburg) [Radiation Damage for X-Rays in Si](#page-0-0) **HPAD Meeting 10/2008** 28 / 26

Results: Dose Dependence of Surface Current *Iox*

Surface current density as function of dose

- **10 •** shown are the results for nine diodes
	- increase of I_{ox}/A_{Gate} by more than two orders of magnitude
	- **•** maximum of 10 μ A/cm² (at \approx 5 MGy)
		- **10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10** (100% ⁼^b ¹⁵⁰ kGy/s) **3% < dose rate < 10%** regardless of dose rate maximum seen
		- decrease probably not caused by temperature induced annealing

KET KALLA BIK KET ELE VOO

Conductance Method

Model through equivalent circuit

in depletion \rightarrow minority carriers can be neglected

- C_D semiconductor depletion-layer capacitance
- *Cox* oxide capacitance
- *Rbulk* resitance of *n*-bulk
	- *R^T* energy loss through capture and emission from interface traps
	- *C^T* charge storage in interface traps
		- τ interface trap lifetime (τ = *R^T* · *C^T*)

1 correct measured *G* for C_{ox} and $R_{bulk} \rightarrow$ parallel conductance G_p **2** plot G_p/ω as function of frequency for a specific bias \bullet function's peak position, height, and width give τ and D_i

KET KALLA BIK KET ELE VOO

Conductance Method: Parallel Conductance *G^p*

Significance of *G^p*

From model follows:

$$
\frac{G_p}{\omega} = \frac{C_T \omega \tau}{1 + \omega^2 \tau^2}, \quad \text{with } \tau = R_T C_T
$$

Band-bending fluctuations

Random distribution of charged traps (\rightarrow point charges) along the $Si-SiO₂$ interface

- \triangleright gaussian distribution of surface potentials
- introduces dispersion term σ_s
- **Exercise** causes dispersion of τ (the trap time constant)

Conductance Method: First Results

G_p/ω for unirradiated diode in depletion

Now measure ..

- *Dit* from peak conductance
	- τ from frequency of conductance peak
- σ*^s* from spread in conductance curve

Difficulty:

(repeat for different biases)

Results for this diode

$$
f_p \approx 3.10^3 \,\text{Hz}
$$
 $D_{it} \approx 2.94 \cdot 10^{10} \,\text{eV}^{-1} \text{cm}^{-2}$
 $\sigma_s \approx 2.1 \frac{\text{k}_B T}{q} \qquad \tau \approx 128 \,\mu s$

high bulk resistivity

Extending Analysis to Irradiated Diodes (I)

Irradiated diode (1 MGy)

Shown are capacitance curves for different frequencies *f* and the flat band voltage V_{fb} as determined from these measurements

Curves shift with *f*

- **•** freq. independed shift due to *Nox*
- **•** freq. dependend shift due to interface states
- interface charges

Extending Analysis to Irradiated Diodes (II)

How to proceed

- Model shift in gate voltage due to interface charges
- Measure D_{it} for different gate voltages and extract position in band gap from model

Conductance vs. Dose

 \leftarrow

≡∗

医

l =

 Ω

Capacitance and Conductance corrected for *Rbulk*

KET KALLA BIK KET ELE VOO

Temperature During Irradiation

压

l te

 QQQ

Bark

 $(1 - 1)$

Simulation: Procedure and Parameters

Input Parameters (as of June 2008)

- MOS capacitor (50 \times 50 μ m, gate width = 50 μ m)
- n-type Si substrate (*Ndop* = 1.28 · 10¹² cm^{−3})
- $\bullet t_{ox} = 0.405 \,\mu m$
- $\phi_{ms} = -0.69 \,\mathrm{V}$
- N_{ox} = 2.66 · 10¹¹ cm⁻² oxide charge density
- $N_{it, ma} = 10^{11}$ cm⁻² interface state density (one donor level at mid-gap)
- σ $\tau_{\text{eff}} = 0.01$ ms

•
$$
\sigma_{\text{eff}} = 2.5 \cdot 10^{-16} \text{ cm}^{-2} - \text{eff}
$$
. capture cross-section

$$
v(n/p) = 2 \cdot 10^7 \,\mathrm{cm/s}
$$

- $E_t = 0$ eV trap energy level
- $S_0 = 2.4 \text{ cm/s}$ surface recombination velocity

•
$$
T_{\text{lattice}} = 300 \, \text{K}
$$

 \bullet *f* = 10 khz, V_{AC} = 0.1 V

KET KALLA BIK KET ELE VOO

(Very) First Results From Model

Comparison of data with model for homogeneous *Dit* distribution

unirradiated (left):

- $D_{it} = 2 \cdot 10^{10} \text{ cm}^{-2} \text{eV}^{-1}$ (from conductance method)
- shift due to *Nox* : −4.9 V
- good agreement with data

irradiated with 1 MGy (right):

- $D_{it} = 2 \cdot 10^{12} \text{ cm}^{-2} \text{eV}^{-1}$
- shift due to *Nox* : −17 V \Rightarrow less than expected from V_{tb} !
- spread-out of data not described!
- impro[vem](#page-37-0)[en](#page-38-0)[t](#page-37-0) [with](#page-38-0)[distr](#page-38-0)[ib](#page-25-0)[u](#page-26-0)[tio](#page-38-0)[n](#page-0-0) [o](#page-26-0)[f](#page-38-0) D_{it} ?