

Status Report on the Analysis of Radiation Damage for X-Rays in Silicon

E. Fretwurst¹, F. Januschek¹, R. Klanner¹, H. Perrey¹, I. Pintilie², F. Renn³, A. Srivastava¹

¹Institute for Experimental Physics, University of Hamburg ²National Institute of Materials Physics, Romania ³Summerstudent at DESY, University of Heidelberg

and lots of help from DESY: H. Graafsma, A. Rothkirch, T. Wroblewski

07. October 2008, meeting of the HPAD Consortium at PSI

Hanno Perrey (Uni Hamburg)

- 3 Analysis of Radiation Damage in Gate-Controlled Diodes
 - Simulation of Gate-Controlled Diodes
- 5 Next Steps
- 6 Summary and Outlook

315

Introduction

- 2 Irradiation and Measurement Set-Up
- 3 Analysis of Radiation Damage in Gate-Controlled Diodes
- 4 Simulation of Gate-Controlled Diodes
- 5 Next Steps
- 6 Summary and Outlook

-

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Specifications at the XFEL

• integrated photon fluxes up to $10^{12} \gamma / \text{pixel} = 10^9 \text{ Gy} [10^9 \text{ J/kg}]$

• photon energies of $E_{\gamma} \approx 12 \, \mathrm{keV}$

Possible effects on detectors and electronics

- no bulk damages: only to be expected at energies $E_{\gamma} \gtrsim 300 \, \mathrm{keV}$
- charge build-up at the oxide and Si-SiO₂ interface:
 - \Rightarrow shift of flatband voltage V_{fb}
 - ⇒ high fields (danger of breakdown)
- damage at the interface causes dark current and leakage of storage capacitors

All detectors and electronics will have to be tested for radiation hardness

Irradiation and Measurement Set-Up Irradiation Setup at DORIS Measurement Setup in the Detector-Laboratory

Analysis of Radiation Damage in Gate-Controlled Diodes

- 4 Simulation of Gate-Controlled Diodes
- 5 Next Steps
- 6 Summary and Outlook

4 3 5 4 3 5 5

Irradiation Setup in Beam F4 at DORIS

- Beam properties
 - typical energy: 10 keV
 - spot-size: 2 mm × 5 mm
 - dose rate 0.5 150 kGy/s (in SiO₂)
- Installation properties
 - samples easily exchangeable
 - motor allows larger structures to be scanned with beam
 - watercooled to 20° C
 - set-up movable to other locations

Current status

- DORIS is operational again
- setup at beamline is being returned to previous state

Measurement Setup in the Detector-Laboratory

- Samples are connected either
 - via probe station, or
 - via mobile box
- Measuring C/V and I/V curves together with sample temperature
- Mobile box is temperature controlled
- Measurements and data taking are PC-controlled

Hanno Perrey (Uni Hamburg)

Irradiation and Measurement Set-Up

Analysis of Radiation Damage in Gate-Controlled Diodes

- Test Structures: Gate-Controlled Diodes
- C/V and I/V Measurements
- Extracting Interface Properties

Simulation of Gate-Controlled Diodes

5 Next Steps

Summary and Outlook

BA 4 BA

Test Structures: Gate-Controlled Diodes

Properties

- 5 aluminium gate rings
- 280 μm thick
- high resistivity ($ho \approx 3.4 \, \mathrm{k}\Omega \mathrm{cm}$)
- 380 nm isolation layer (consisting of SiO₂ + Si₃N₄) between gates and n-bulk

C/V and I/V Measurements

HPAD Meeting 10/2008

10/26

Hanno Perrey (Uni Hamburg)

Results: Dose Dependence of MOS-Capacitance

< 61

Results: Dose Dependence of N_{ox} and I_{ox}

decrease not caused by temperature induced annealing

Hanno Perrey (Uni Hamburg)

Capacitance Measurements and Interface Traps

- Irradiated diodes show strong frequency dependence
 - caused by presence of interface states N_{it}
- Shift of curves to higher gate voltages is caused by both
 - charges in the oxide (N_{ox}) and
 - charges at the interface (N_{it})
- $\Rightarrow N_{it}$ strongly effects V_{fb} !

Measuring Position of Interface Traps in Band Gap

Receipe for measuring the Thermally Stimulated Current (TSC)

- Cool down with MOS biased in accumulation
- At 30° K switch bias to depletion
 - stored charge is frozen
- Heat sample up with constant heating rate in depletion
 - Fermi level scans band gap
 - charges are emitted
 - measure current and temperature

Extract density of interface states D_{it} (from current) and capture cross section σ (from dependence on heating rate)

Hanno Perrey (Uni Hamburg)

First Results From TSC Measurements

Measured TSC signal (top)

- Shown is current versus temperature
- for an irradiated 1 MGy diode
- and for different heating rates

Extracted D_{it} (bottom)

D_{it} versus band gap energy for different diodes at different doses

- very deep levels
- no signal for unirradiated diode
- highest D_{it} for 1 MGy, decrease of D_{it} with higher doses
- result of 2nd-order processes leading to electrically inactive defects?

Summary of Experimental Results

-

Introduction

- 2 Irradiation and Measurement Set-Up
- 3 Analysis of Radiation Damage in Gate-Controlled Diodes
- 4 Simulation of Gate-Controlled Diodes
- 5 Next Steps
- Summary and Outlook

・ 同 ト ・ 日 ト ・ 日 ト ・ 日 日

Simulation (I)

Aim

Detailed simulation of sensor including radiation damage effects

Software

Device simulation through IC-TCAD DESSIS (2D Device Simulation for Smart Integrated Systems)

Physics models used

- SRH recombination
- Auger recombination
- impact ionization
- surface recombination
- gate current (Lucky) model
- trap models
 - solving Poisson and electron/hole current-continuity equations
 - dependence of τ on N_{it} taken into account through τ_{eff}

Simulation (II)

Procedure

- Design structure in MDRAW
- Feed results into DESSIS
- Combine simulation of device (DESSIS) and circuit (SPICE)

Input Parameters

Simulation (III): First Results for G/V-Measurements

Comparison of data and simulation

for an unirradiated diode: frequency dependence of C/V (*top*) and G/V (*bottom*) measurements for two frequencies (10 kHz and 15 kHz) after optimization of parameters (D_{it} , E_t , N_{ox} , type of traps,..)

simulation of irradiated diodes

- implemented
- under studies

Hanno Perrey (Uni Hamburg)

Introduction

- 2 Irradiation and Measurement Set-Up
- 3 Analysis of Radiation Damage in Gate-Controlled Diodes
- 4 Simulation of Gate-Controlled Diodes

5 Next Steps

Summary and Outlook

・ 同 ト ・ 日 ト ・ 日 ト ・ 日 日

Next Steps (I)

Irradiation/Measurement Setup

- DORIS beam is back so we need to
 - return setup to state before DORIS shutdown
 - reestablish beam properties
 - perform dose calibration
- new substrate with 16 pins
- connections for in-situ biasing and measurement
- optical table for easier changes of irradiation setup
- setup measurement stand at beamline
- improve temperature stabilization

Next Steps (II)

Analysis of present diodes

- for TSC measurements
 - extract D_{it} from more (irradiated) diodes
- for CMOS measurements
 - improve understanding and modeling of curves to verify results
 - study annealing effects
 - ⇒ phenomenological model to describe D_{it} and V_{fb} dependency on dose and annealing
- for *l_{ox}* measurements
 - understand if structures are suitable
- compare data with measurements of other groups

New data and measurements

- analyze new structures (CMS TS rectangular comb structures)
- irradiate new diodes and detectors at DORIS
- irradiation for other users

Hanno Perrey (Uni Hamburg)

Next Steps (III)

Simulation

- further adjust parameters to experimental C/V and G/V measurements
- Proceed with simulation of irradiated diodes
- simulate pixel detector with/without radiation damage and compare to I/V and C/V measurements

・ 同 ト ・ 日 ト ・ 日 ト ・ 日 日

Introduction

- 2 Irradiation and Measurement Set-Up
- 3 Analysis of Radiation Damage in Gate-Controlled Diodes
- 4 Simulation of Gate-Controlled Diodes
- 5 Next Steps
- 6 Summary and Outlook

・ 同 ト ・ 日 ト ・ 日 ト ・ 日 日

Summary and Outlook

Summary

- D_{it} has been extracted from unirradiated and irradiated diodes
- After steep rise *D_{it}* drops with dose
- D_{it} effects measured V_{fb}

Outlook

- Analysis
 - compare with theoretical prediction and simulation
 - verify observed behaviour of D_{it} in other diodes
 - subtract effects of D_{it} on V_{fb} to extract N_{ox}
- Measurements
 - new irradiations possible soon
 - study annealing effects
 - \Rightarrow phenomenological model to describe
 - D_{it} and V_{fb} dependency on dose and annealing

イロト 不得 トイヨト イヨト 正言 ろくの

Backup

- Current- and Capacitance-Characteristics of MOS-Diodes
- Dose Dependence of Surface Current
- Conductance Method and First Results
- Conductance Method: Parallel Conductance Gp
- Conductance vs. Dose
- Capacitance and Conductance Corrected for R_{bulk}
- Temperature During Irradiation
- Detailed Simulation Parameters
- (Very) First Results From Model

Hanno Perrey (Uni Hamburg)

Radiation Damage for X-Rays in Si

HPAD Meeting 10/2008 28 / 26

Results: Dose Dependence of Surface Current Iox

Surface current density as function of dose

- shown are the results for nine diodes
- increase of I_{ox}/A_{Gate} by more than two orders of magnitude
- maximum of 10 μ A/cm² (at \approx 5 MGy)
- maximum seen regardless of dose rate (100% = 150 kGy/s)
- decrease probably not caused by temperature induced annealing

Conductance Method

Model through equivalent circuit

in depletion \rightarrow minority carriers can be neglected

- C_D semiconductor depletion-layer capacitance
- C_{ox} oxide capacitance
- R_{bulk} resitance of *n*-bulk
 - R_{T} energy loss through capture and emission from interface traps
 - C_{T} charge storage in interface traps
 - τ interface trap lifetime ($\tau = R_T \cdot C_T$)

Recipe for extracting D_{it}

correct measured G for C_{ox} and $R_{bulk} \rightarrow$ parallel conductance G_p 2 plot G_p/ω as function of frequency for a specific bias function's peak position, height, and width give τ and D_{it}

Conductance Method: Parallel Conductance Gp

тСт

Significance of G_p

From model follows:

$$\frac{G_{p}}{\omega} = \frac{C_{T}\omega\tau}{1+\omega^{2}\tau^{2}}, \qquad \text{with } \tau = R$$

Band-bending fluctuations

Random distribution of charged traps (\rightarrow point charges) along the Si-SiO_2 interface

- gaussian distribution of surface potentials
- introduces dispersion term σ_s
- causes dispersion of τ (the trap time constant)

Conductance Method: First Results

G_p/ω for unirradiated diode in depletion

Now measure ..

- D_{it} from peak conductance
 - $\tau \ \ {\rm from \ frequency \ of} \\ {\rm conductance \ peak} \\$
- σ_s from spread in conductance curve

(repeat for different biases)

Results for this diode

$$\begin{array}{ll} f_{\rho} \approx 3 \cdot 10^{3} \, \mathrm{Hz} & D_{it} \approx 2.94 \cdot 10^{10} \, \mathrm{eV^{-1} cm^{-1}} \\ \sigma_{s} \approx 2.1 \, \frac{\mathrm{k_{B} T}}{a} & \tau \approx 128 \, \mu \mathrm{s} \end{array}$$

Difficulty:

2

high bulk resistivity

Extending Analysis to Irradiated Diodes (I)

Irradiated diode (1 MGy)

Shown are capacitance curves for different frequencies f and the flat band voltage V_{fb} as determined from these measurements

Curves shift with f

- freq. independed shift due to *N*_{ox}
- freq. dependend shift due to interface states
- interface charges modify surface potential

Extending Analysis to Irradiated Diodes (II)

How to proceed

- Model shift in gate voltage due to interface charges
- Measure *D_{it}* for different gate voltages and extract position in band gap from model

Hanno Perrey (Uni Hamburg)

Conductance vs. Dose

-

3 > 4 3

Capacitance and Conductance corrected for Rbulk

Temperature During Irradiation

-

Simulation: Procedure and Parameters

Input Parameters (as of June 2008)

- MOS capacitor (50 imes 50 μ m, gate width = 50 μ m)
- n-type Si substrate ($Ndop = 1.28 \cdot 10^{12} \, \mathrm{cm}^{-3}$)
- $t_{ox} = 0.405 \,\mu m$
- $\phi_{ms} = -0.69 \, \mathrm{V}$
- $N_{ox} = 2.66 \cdot 10^{11} \,\mathrm{cm}^{-2}$ oxide charge density
- *N_{it,mg}* = 10¹¹ cm⁻² interface state density (one donor level at mid-gap)
- τ_{eff} = 0.01 ms
- $\sigma_{eff} = 2.5 \cdot 10^{-16} \,\mathrm{cm}^{-2} \mathrm{eff.}$ capture cross-section
- $v(n/p) = 2 \cdot 10^7 \, \text{cm/s}$
- $E_t = 0 \, \text{eV} \text{trap energy level}$
- $S_0 = 2.4 \text{ cm/s} \text{surface recombination velocity}$
- *T_{lattice}* = 300 K
- $f = 10 \text{ khz}, V_{AC} = 0.1 \text{ V}$

(Very) First Results From Model

Comparison of data with model for homogeneous *D_{it}* distribution

unirradiated (left):

- $D_{it} = 2 \cdot 10^{10} \,\mathrm{cm}^{-2} \mathrm{eV}^{-1}$ (from conductance method)
- shift due to Nox: -4.9 V
- good agreement with data

irradiated with 1 MGy (right):

- $D_{it} = 2 \cdot 10^{12} \,\mathrm{cm}^{-2} \mathrm{eV}^{-1}$
- shift due to N_{ox} : -17 V \Rightarrow less than expected from V_{fb} !
- spread-out of data not described!
- improvement with distribution of D_{it}?