

UН

Ĥ

Universität Hamburg

Outlook

• Overview of the analysis

- Prototypical images:
 - Single object imaging & XPCS short presentation (reminder...)
 - Presentation of the data \Rightarrow Dynamic range analysis

- Detector Simulation Software
 - Presentation
 - Waiting for your inputs

Overview of the Analysis

Outlook

• Overview of the analysis

- Prototypical images:
 - Single object imaging & XPCS short presentation (reminder...)
 - Presentation of the data \Rightarrow Dynamic range analysis

- Detector Simulation Software
 - Presentation
 - Waiting for your inputs

Single object Imaging

Single object Imaging, the reconstruction

- Algorithm starts with an image (random)
- Apply projections
- Iteratively modify image until converge

hybrid input-output (Fienup, Appl. Opt. 21, 2759 (1982))

difference map: Elser, J. Opt. Soc. Am. A 4, 118 (2002)

Slide robbed to J. Kirz , ALS Berkeley

Single object Imaging @XFel Sources

X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules

Slide robbed to Henry Chapman, CFel Hamburg

XPCS

X-ray Photon Correlation Spectroscopy

Slide Robbed to P. Pusey, University of Edinburgh

🛱 Universität Hamburg

XPCS @ XFel Sources

Sequential Mode

Slide Robbed to G. Gruebel, DESY

XPCS @ XFel Sources

Delay line Mode

XPCS @ XFel Sources

Pump Probe Mode

Slide Robbed to G. Gruebel, DESY

Outlook

• Overview of the analysis

- Prototypical images:
 - Single object imaging & XPCS short presentation (reminder...)
 - Presentation of the data \Rightarrow Dynamic range analysis
 - Which sort of data
 - The data

- Detector Simulation Software
 - Presentation
 - Waiting for your inputs

Obtainment of prototypical images : Use of relevant experimental data

Use relevant data: Example: single nanocrystal study (courtesy, C.Mocuta ESRF) Single object scattering **XPCS** patterns **Example: Surface Colloid** (courtesy, C.Gutt DESY) [0Q1] [-110] # hv [110] Sample Substrate month.

💾 Universität Hamburg

Obtainment of prototypical images : Simulation of Small Objects Scattering

- Compute the contribution of each atom for each pixel
- Sum the intensities (complex)
- App of Most Likely intensities for each pixels (real numbers)
- ⇒ Poisson statistics analysis Gives Intensity (integers)
- ⇒ Then Add noise...

Data: Case of very small single object

- Simulation of a dwarf Virus
 - \rightarrow single virus (simulation by F.Pfeiffer, SLS)

Mostly a central peak, plus a few scattered photons.

Data: Case of small clusters

 Ex. Simulation Ferritin in 5*5*5 crystal unit crystal (large) →250 molecules of 20kDa each. (simulation by F.Pfeiffer, SLS)

Guillaume Potdevin for the XFEL-HPAD-Consortium

Universität Hamburg

Data: The background problem

• Lithographed samples with a CCD (courtesy Schropp, Vartanyants @ esrf id01)

• Intensity ~ $1/q^3$ + features.

Guillaume Potdevin for the XFEL-HPAD-Consortium

Data: An example of nano object

Ex. Exp data from single object on Si Substrate
 →object : ~800nm size (courtesy of data: C.Mocutta, ESRF)

Guillaume Potdevin for the XFEL-HPAD-Consortium

Data: Case of the XPCS

• Ex. XPCS data, colloids on a surface (courtesy of data C.Gutt, @ esrf id10)

Speckles are localized (i.e. density of pixel matters, not only surface)

Summary of available images

Sample	Remark	Contributor
Simulation of Ferritin	Single Mol, 1, 3, 5, crystal units	Pfeiffer, <i>et al.</i>
Simulation of Dwarf Virus	Standalone	Pfeiffer, <i>et al.</i>
<i>Exp. data</i> of lithographed sample on SiN	<i>Contribution from SiN</i> membrane to signal	Vartaniants, Schrupp, <i>et</i> <i>al.</i>
<i>Exp. data</i> of nanostructures	Missing information for ADU→Photons conversion	C.Mocuta, <i>et al.</i>
Simulation of Pd nanocrystals	@100keV (irrelevant for now). No scaling in photons	Vartaniants, Blumes, <i>et</i> <i>al.</i>
XPCS exp. data	8 keV, Relevant regarding intensities. For noise?	C.Gutt, <i>et al.</i>

Dynamic Range analysis

- Lots of photons at the center (not only direct beam)
 - \Rightarrow Central hole to let high intensities go: <u>Hole ~ 2mm >> Central Beam</u> \Rightarrow Another adapted detector further (low q info)?
- "Randomly" scattered photons smaller Intensities
 ⇒ Per region shiftable dynamic range?

Then Add:

- Background should reinforce this tendency
- Bragg Peaks (nano-crystals) can be a problem (increased dynamics at the edge)

Case of experiments like liquid scattering (donuts shape)

Detector Geometry

• Problem of the detector geometry: central Hole?

• For XPCS experiments, it could be interesting to split the detector in 4 (or more)

Outlook

• Overview of the analysis

- Prototypical images:
 - Single object imaging & XPCS short presentation (reminder...)
 - Presentation of the data \Rightarrow Dynamic range analysis

- Detector Simulation Software
 - Presentation
 - Sensor
 - Asic noise
 - Waiting for your inputs

Simulation of the detector Performances

The code is built on a modular structure

Sensor Absorption simulation

ASIC noise simulation

ASIC noise simulation: Model¹

¹ from H.Spieler, Semiconductor detector system, oxford science publication

ASIC noise simulation: Values

Guillaume Potdevin for the XFEL-HPAD-Consortium

Guillaume Potdevin for the XFEL-HPAD-Consortium

Future

- Finish the whole simulation code
- Develop Background simulation tool
- Get more images
- Loop back, ex. Try reconstruction algorithms with various parameters (hole size, Sensor Thickness...)