Interface electronics

Peter Göttlicher, DESY-FEB

- Links to backend/control implications to mechanical design, to effort in FPGA's
- specifications of signals at interfaces and connectors possible mechanical arrangements
- Communication to control-system
- ADC pre-checks
- time line

Common projects

Most important changes:

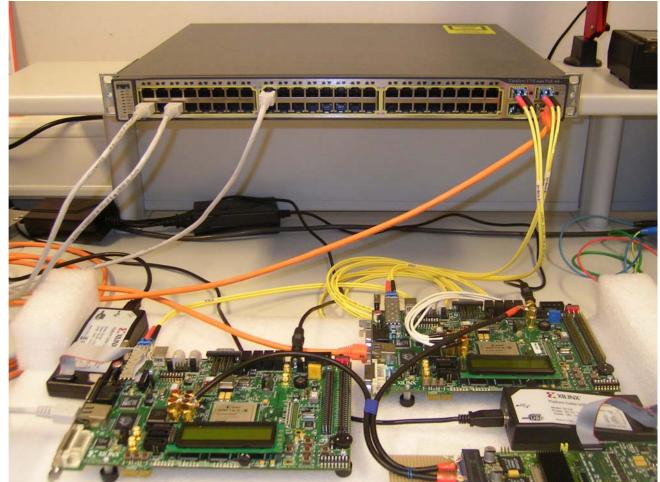
 backend and control systems are "Common projects" for XFEL detectors.

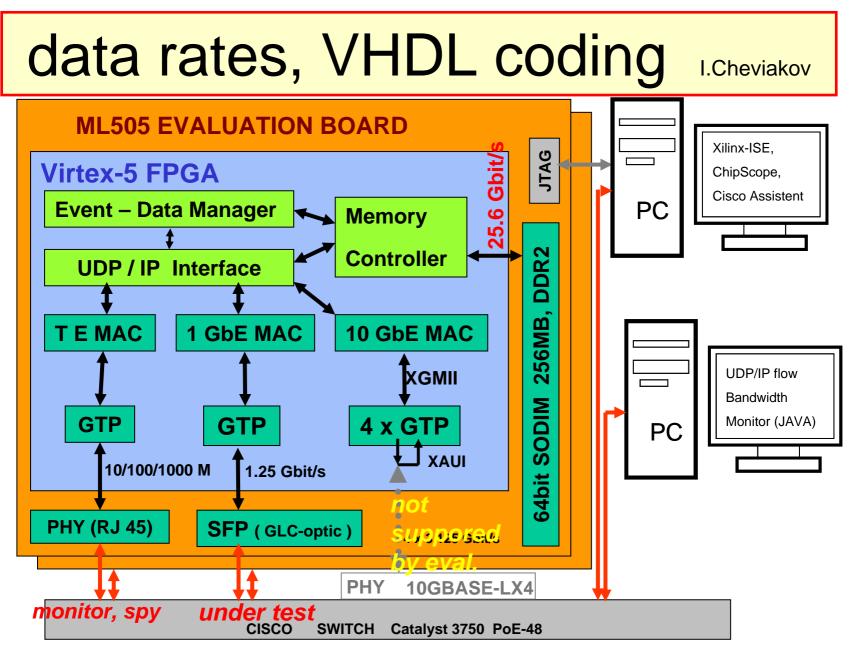
Consequences for HPAD

- will result in similar systems
- some tasks less in HPAD also less freedom
- Process ongoing to get specifications/border definitions ongoing.

Links to backend/control

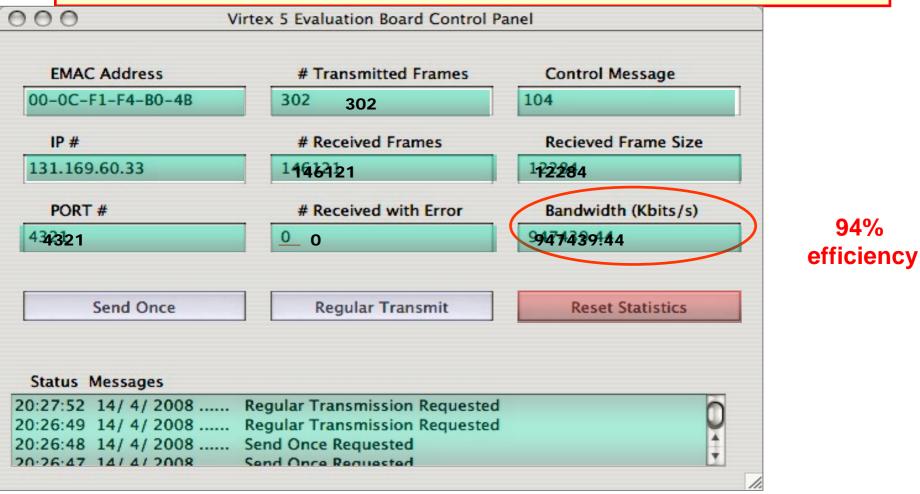
Our data rate to backend: 400 frames/train, 10trains/sec, 16bit/pixel, 32mode	ules/1Mpixel 2.1Gbit/s + slow + flags
	+ checks
For us multiple 1G-link in one bundle is sufficient	, up to date technology in n years?
Backend prefers 10G-Ethernet	10Gbit/s/link
less links, less tin	ne-scheduling, future-technology ?!?!
Backend links low number of links	,
	we have 32 modules !!!!
Can AP-HPAD can combine two mo	odules to one link?
Also PCB designs likes much more	10cm width
Larger FPGA's, easier for analog	g+control
Peter Göttlicher, DESY-FEB, June 11th 2	2008


3


Links to backend: Tests

Test based on commercial evaluation boards Virtex5, + switch + PC

Firmware for - 1GbE/UDP,


10GbE:
* internal tests
* Boards etc.
ordered

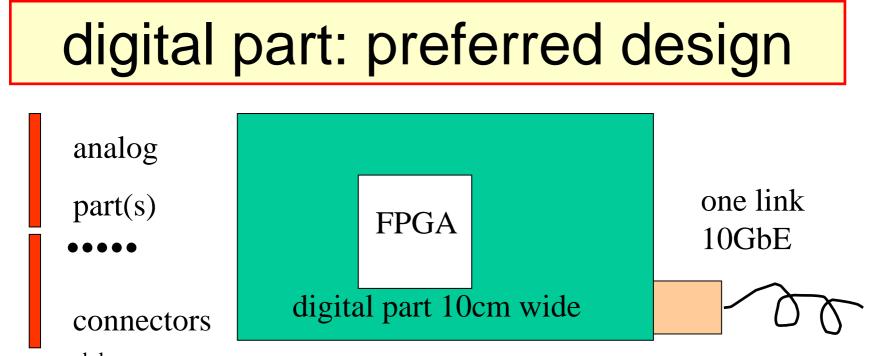
Peter Göttlicher, DESY-FEB, June 11th 2008

data rates, results

Planning with is on the safe side from viewpoint of FPGA 80% for pixel-data +10% for monitoring, checksums, train-/frame-number Peter Göttlicher, DESY-FEB, June 11th 2008

data rates, results

	Used XILINX XC5VLX30T		Only complied for larger XC5VLX50T	
	4x1 Gbit/s	10 Gbit/s	4x1 Gbit/s	10 Gbit/s
Slice Registers	33%	36%	22%	24%
Block RAM/FIFO	52%	58%	31%	35%
GTP_DUALs	75%	75%	50%	50%
Bonded IO Bs	56%	56%	42%	42%


 \Rightarrow both options looks promising,

fits well into a XILINX

high efficiency for payload on the links

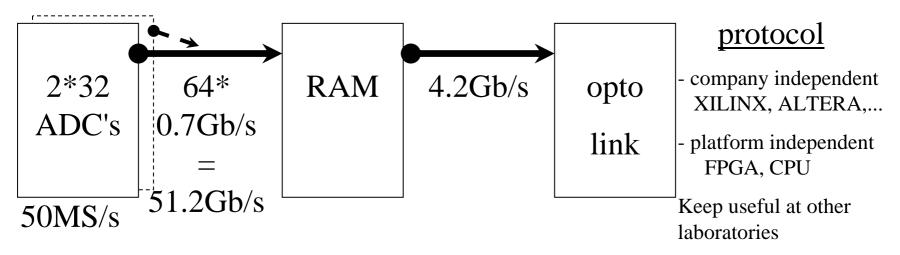
RAM access will be increase in design by wider address bus/two modules 10G-Ethernet only internally tested (limited by evaluation)

Space/circuit requirement under investigation by P.Vetrov

sensor modules each > 51.2mm wide

By that, AP-HPAD gets 16 output/1M with 10GbE with 50% payload Backend is investigating, that 16 links are OK. Alternatively: two digital parts with intercommunication, but FPGA size limited. "more crasy mechanics"

Moved from AP-HPAD to Common


- No more HPAD:

data sorting to groups of frames by time scheduled data transfers

- Left is still the algorithm for

ADC to RAM and delayed read, reduce rate and cables!

Signals at Board/Board connectors

Input of Interface from Sensor side (=8 ASIC's)			
32	pairs w	vith shield	or side (=8 ASIC's) $Start point$ for analog from ASICto be discussedfor gain of cell $be discussed$
8	pairs	100MHz	for gain of cell
3	pairs		for ASIC readout
		50MHz	Readout CLK, pixel increment
			cell increment
4	pairs	5MHz	for signal to Cap-cells
			write-CLK, read/write, fast-reject, calib
8	pin or :	multiple	Power 8 times 2? full time?
1	pin		Power ON/Standby (train)
1	pin, bu	t isolated	HV - What voltage/polarity?
few	pins		GND, also in the shields.
2	pins		Slow control - I2C like
Count is around 120 pins plus shields or in between GND's			
Can gains per ASIC be coded to 1 pair? 32Mb/s/ASIC or all parallel?			

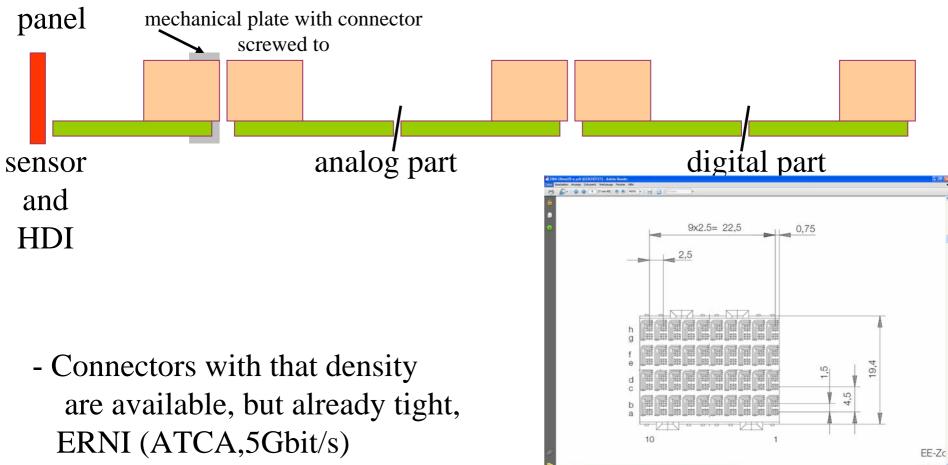
Signals at Board/Board connectors

analog to digital part:

32	pairs	with shield 700M	b/s for ADC-out
8	pairs	with shield 700M	b/s for ADC-sync
8	pairs	50MHz	for gains
3		50MHz F	Readout CLK, pixel increment
		С	ell increment
5	pairs	5MHz f	or signal to Cap-cells
		V	vrite-CLK, read/write, fast-reject
		С	alib, 5MHz
4	pins	S	low control - I2C like
Count	is arou	und 120 pins plus	shields or in between GND's

And space for bypass of cables from analog part to back-panel

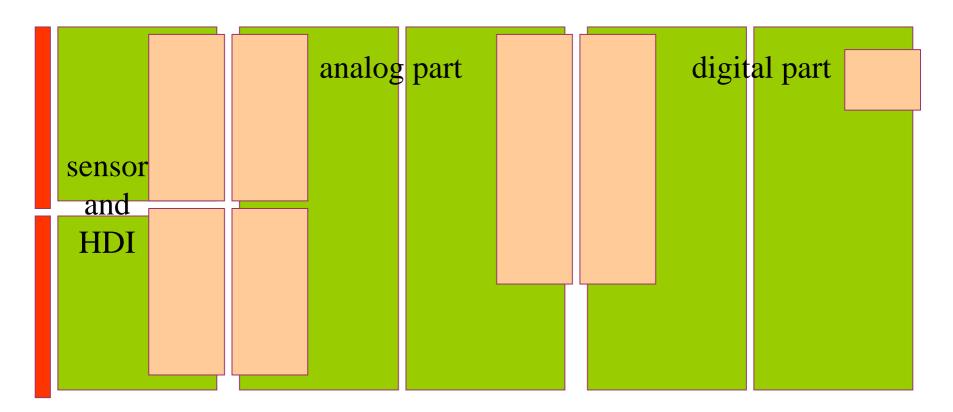
Signals at Back-panel


from analog/digital part:

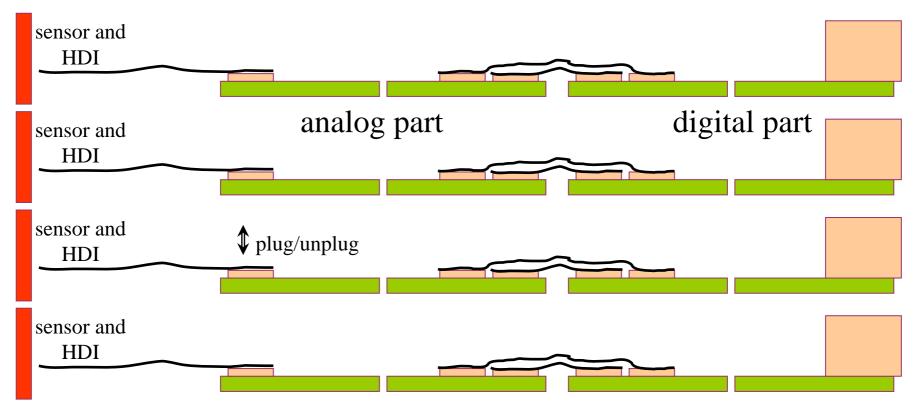
1	Opto SF	P+	10GbE
6	pairs	5MHz	train_start, bunch_clk, 5MHz_clk
			fast_reject, calib, one spare
2	pairs	125MHz	Slow control
			via 100MbE/TCP-IP
• • • • •	pins		remote firmware upgrades
1	shielded		HV for bias
• • • •			Power for analog part+ASIC
••••			Power for digital part

GND-point to PE is the detector head (ASIC/sensor/analog)

Mechanical design from electronic


Option: digital/analog part possible to be pulled out to the back

- HV and power with other connectors, beside.


Connector for PCB to PCB

Option: digital part, analog part are possible to pull out to the back panel

Connector for PCB to PCB

Option: every thing to the front or disassemble more to get to inner region has more freedom for the connector choise.

Connectivity to control system

- Boot and monitor data (per train)

protocol is supported by uC and FPGA

100MbE TCP/IP

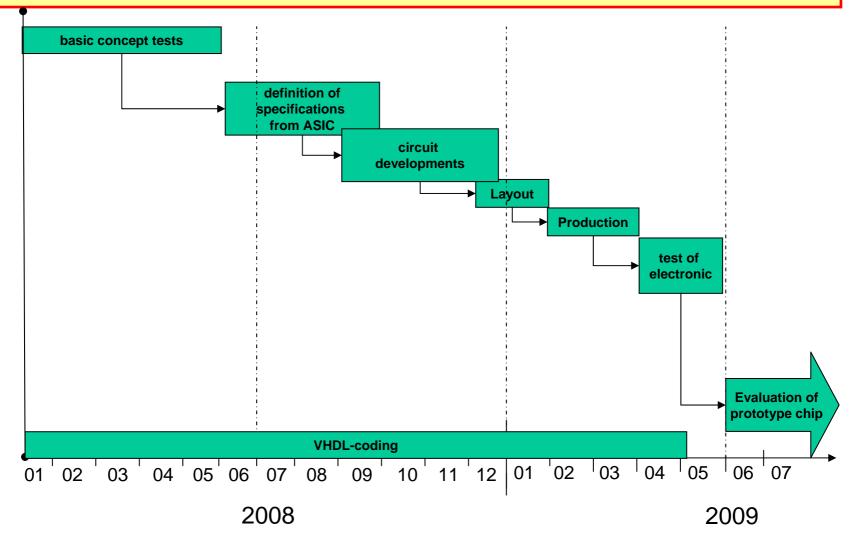
5MHz

- Clocks for train synchronization
- remote firmware upgrade
- Power
- HV

GND reference is the detector head:

- control must float per module
- drive copper based signals to GND returned from detector head
- all wire runs per detector module as nearby bundle EMI- (small L, transformers)

ADC to FPGA H.Wentzlaff



System of evaluation boards: ADC...PC:

Boards ordered,... dig.part not OK., end back, will come back in July

Open VHDL code: Good for start up of final program HPAD: 1FPGA for 4 of these ADC chips: 4 clocks, 32x700Mb/s Could also be a base for easy evaluation of ASIC's??? Needed only first amplification stage and pattern-gererator

Interface-electronic ASIC'2009

Peter Göttlicher, DESY-FEB, June 11th 2008