X-ray Detectors How do they work ? How are they characterized ? What will the future bring?

Heinz Graafsma (heinz.graafsma@desy.de)

Photon Science Detector Group; DESY-Hamburg; Germany & University MidSweden

01/08/2019

01/08/2019

The Detector Challenge:

- **Spectroscopy** (determine energy of the X-rays):
 - meV 1 keV resolution
 - time resolved (100 psec) static
- **Imaging** (determine intensity distribution)
 - Micro-meter millimeter resolution
 - Tomographic
 - Time resolved
- Scattering (determine intensity as function of momentum transfer = angle)
 - Small angel protein crystallography
 - Diffuse Bragg
 - Crystals liquids

What are the basic principles ?

- 1. X-ray light is quantized (photons)
- 2. In order to detect you have to transfer energy from the particle to the detector
- 3. A photon is either fully absorbed or not seen at all (no track like for MIPs)
- 4. The energy absorbed is transferred into an electrical signal and then into a number (digitized).

Signal Generation -> Needs transfer of Energy

Any form of elementary excitation can be used to detect the radiation signal:

Ionization (gas, liquids, solids) Excitation of optical states (scintillators) Excitation of lattice vibrations (phonons) Breakup of Cooper pairs in superconductors

Typical excitation energies:

Ionization in semiconductors:1 - 5 eVScintillation:appr. 20 eVPhonons:meVBreakup of Cooper pairs:meV

What would you like to know about your X-rays?

- 1. Intensity or flux (photons/sec)
- 2. Position (or often angles)
- 3. Energy (wavelength)
- 4. Arrival time (time resolved experiments)
- 5. Polarization

4 modes of detection

- 1. Current (=flux) mode operation
- 2. Integration mode operation
- 3. Photon counting mode operation
- 4. Energy dispersive mode operation

Photon counting mode

Energy dispersive mode

Some general detector parameters

- <u>QE</u> = Quantum Efficiency = fraction of incoming photons detected (<1.0). You want this to be as high as possible.
- <u>Gain</u> = relation between your signal strength (V, A, ADU) and the number of photons.

Warning: when doing science analysis, make sure you converted your numbers back to photons!

2-Dimensional X-ray Detectors

- Workhorses at synchrotron sources → make the best use of the available photons.
- Counting or Integrating
- Direct detection or Indirect detections (Indirect = first convert X-rays to optical photons, then detect optical photons)

Some parameters for 2D systems

<u>DQE</u> = Detective Quantum Efficiency =

$$rac{(signal/noise)_{out}}{(signal/noise)_{in}}$$
 <1.0

Detector can never increase signal, nor decrease noise! So signal to noise will always degrade in the detector. NB: <u>signal to noise is the most important parameter</u> when you measure something!

Some more parameters for 2D systems

 Point Spread Function (PSF) (Line spread function (LSF) or spatial resolution):

A very small beam (smaller than the pixel size) will produce a spot with a certain size and shape. Very important are the FWHM; and the tails of the PSF.

This is experimentally difficult → use sharp edge and Edge Spread Function (ESF)
Note: pixel size is not spatial resolution! (but should be close to it in an optimal design).

Some more parameters for 2D systems

• Modulation Transfer Function (MTF):

How is a spatially modulated signal (line pattern) recorded (transferred) by the detector?

 $Modulation = contrast = \frac{Max - Min}{Max + Min}$

This depends on the frequency. Is directly related to the LSF and the DQE

• Modulation Transfer Function (MTF) Example

Ideal:
$$contrast = \frac{100 - 0}{100 + 0} = 1.0$$

Effect of noise:
$$contrast = \frac{150 - 50}{150 + 50} = 0.5$$

Effect of PSF:
$$contrast = \frac{75 - 25}{75 + 25} = 0.5$$

Counting versus Integrating

Various 2D systems used at Synchrotrons:

- Charge Coupled Devices: CCD
- Hybrid Pixel Array Detectors: HPAD
- Monolithic Active Pixel Sensors: MAPs; CMOS imagers

The current generation 2D detectors: Hybrid Pixel Array Detectors

What are they? and why are they so good?

Hybrid Pixel Array Detector (HPAD)

Diode Detection Layer

Gives enormous flexibility!

The new generation: Medipix et al.

01/08/2019

Why are HPADs so popular ?

- Custom design of functionality: you design your readout chip specific for your application (unlike CCDs).
- Can do photon counting → "no" noise.
- Can do photon integration → fast
- Direct detection
 → good spatial resolution
- Massive parallel detection → high flux
- But: development takes long and is expensive.

HPAD Front-end modules

Detector Modules

LAMBDA at 2000 fps

Hybrid Pixel Detectors

Particle / X-ray \rightarrow **Signal Charge** \rightarrow **Electr. Amplifier** \rightarrow **Readout** \rightarrow **Digital Data**

High-Z pixel detectors

> Aim: replace silicon sensor in LAMBDA with high-Z semiconductor

- Combine high QE with hard X-rays, high frame rate, high signal-to-noise
- Investigating different materials in collaboration with other institutes and industry
 - Gallium arsenide
 - Cadmium telluride
 - Germanium

Material	Status	Raw image quality	Other pros/cons
Cadmium telluride	Established technology		Highest QE > 50keV Slow progress
Gallium arsenide	New production method, quick progress		Flatfield correction greatly improves images
Germanium	Newer development, still need to engineer system for beamline		High uniformity Cooling to -100 C required

| Page 31

The FEL-Challenge: Different Science

One of the Holy Grails

K. J. Gaffney and H. N. Chapman, *Science 8 June 2007*

The European Free Electron Laser

What are the Challenges ?

The Adaptive Gain Integrating Pixel Detector

High dynamic range:

Dynamically gain switching system

The AGIPD RO-Principle

AGIPD 1.0 Pixel Electronics

- 200 x 200 micron² pixels
- 352 storage cells + veto possibilities.
- Minumum signal ~ 300 e⁻ = 0.1 photon of 12.4keV
- Maximum signal ~ 33 10⁶ e⁻ = 10⁴ photons of 12.4keV
- 4.5 MHz frame rate
- 64 x 64 pixels per ASIC
- 2 x 8 ASICs per module (128x512 pixels, no dead area)
- 4 modules per quadrant

The AGIPD RO-Principle

At the P10 beamline

Beam direction (coming from sample)

> It took about $1\frac{1}{2}$ hours to set up, after about 2 hours we saw the first image

Not in the picture: Sample, Alexanders PC, people, ...

Looking at the direct beam

Some SAXS measurements

Scientific quality data obtained

- Complete system proven to work
- Calibration proven to be adequate

Detector structure

Module construction

- 2 x 8 chips = 128 x 512 pixels
- 5 electronic boards per modules
- 16 modules per detector → 80 (+ 4) electronic boards per detector

6.5Mhz frame rate at APS

Single bunch imaging – a challenge to find processes fast enough

Experimental setup

- Drilled equidistant holes into a DVD
- DVD painted with zinc to increase absorption
- Mounted DVD on a fast electric motor
- Measurement of hole to hole frequency with diode and oscilloscope: 1.208kHz

Calculation for burst imaging

- APS bunch spacing: t = 154ns
- Number of pixels crossed during burst of 352 images: ≈ 8
- Pixel size: 200µm

Single bunch imaging is possible even at a repetition rate of 6.5MHz

The final detector consists of 4 quadrants. Each quadrant is independently movable via a motion system to shape the central hole

The final system

- 1 Million pixels
- 4 movable quadrants
- Central hole
- In vacuum
- -20 C
- ~300 kg

The real thing

AGIPD during the inauguration XFEL

The first experiment at XFEL SPB/SFX was an open collaboration

SPB/SFX Instrument	Samples	Jets & Diagnostics	Analysis	XFEL Information
Scientists	Dominik Oberthuer	Max Wiedorn	Anton Barty	Technology and Data
<u>Adrian Mancuso</u>	Carolin Seuring	<u>Saša Bajt</u>	<u>Steve Aplin</u>	Krzysztof Wrona
<u>Richard Bean</u>	Imrich Barak	Jakob Andreasson	Andrew Aquila	Djelloul Boukhelef
Klaus Giewekemeyer	Sadia Bari	Salah Awel	Kartik Ayyer	Illia Derevianko
Marjan Hadian	Christian Betzel	Miriam Barthelmess	Wolfgang Brehm	Jorge Elizondo
Yoonhee Kim	Matthew Coleman	Anja Burkhardt	Aaron Brewster	Kimon Filippakopoulos
Romain Letrun	Chelsie Conrad	Francisco Cruz-Mazo	Henry Chapman	Manfred Knaack
Marc Messerschmidt	Connie Darmanin	Bruce Doak	Florian Flachsenberg	Siriyala Kujala
Grant Mills	XY Fang	Yang Du	Yaroslav Gevorkov	Luis Maia
Adam Round	Petra Fromme	Holger Fleckenstein	– Helen Ginn	Maurizio Manetti
Tokushi Sato	Raimund Fromme	Matthias Frank	Rick Kirian	Bartosz Poljancewicz
Marcin Sikorski	S. Holmes	Alfonso Gañán Calvo	Filipe Maia	Gianpietro Previtali
Stephan Stern	🖣 Inari Kursula	Lars Gumprecht	Valerio Mariani	Nasser Al-Qudami
Patrik Vagovic	김경현	Janos Hajdu	Andrew Morgan	Eduard Stoica
Britta Weinhausen	Kerstin Mühlig	Michael Heymann	Keith Nugent	Janusz Szuba
XFEL Detector	Anna Munke	Daniel Horke	Peter Schwander	XFEL Controls and
Steffen Hauf	Allen Orville	Mark Hunter	Marvin Seibert	Software
Alexander Kaukher	Arwen Pearson	Siegfried Imlau	Natasha Stander	Sandor Brockhauser
Astrid Münnich	Markus Perbandt	Juraj Knoska	Pablo Villanueva-Perez	Andreas Beckmann
Jolanta Sztuk-Dambietz	Lars Redecke	Jochen Küpper	Thomas White	Valerii Bondar
ACIDD	Mia Rudolph	Julia Maracke	Oleksandr Yefanov	Cvril Danilevski
AGIPD	losifina Sarrou	Alke Meents	Nadia Zatsepin	Waiid Ehsan
Apphage Allahorhali	Marius Schmidt	Diana Monteiro	XEEL Sample	Sergev Esenov
Aschkan Allangholi	Robin Schubert	Xavier Lourdu	Environment	Hans Fangohr
Dominic Greiffenberg	Jonas Sellberg	Tatiana Safenreiter	Loban Biolooki	Gero Flucke
Alexander Klyuev	Megan Shelby	Ilme Schlichting	Katarina Dörnar	Gabriele Giovanetti
Manuela Kunn	Jason Stagno	Robert Shoeman	Raterina Domer	Dennis Goeries
Torsten Laurus	Yun-Xing Wang	Ray Sierra		Burkhard Heisen
Davide IViezza		John Spence	JUACHIM SCHUIZ	David Hickin
Jenniter Poenisen		Claudiu Stan		Anna Klimovskaja
		Martin Trebbin		Leonce Mekinda

The initial analysis of the European XFEL data gives excellent densities

Number of frames: 44,699 Number of indexed frames: 24,733 Number of crystals: 26,755

Rsplit to 1.8 A: 12.0% Rwork/Rfree: 0.168 / 0.193 Average Biso: 34.9 Å² RMSD bonds: 0.003 Å RMSD angles: 0.592°

 $2mFo-DFc map (1.5\sigma)$ and mFo-DFc map (3σ) over residues 33-55 of lysozyme

Dominik Oberthur: Structure refinement 17 Nov 2017

Various 2D systems used at Synchrotrons:

- Charge Coupled Devices: CCD
- Hybrid Pixel Array Detectors: HPAD
- Monolithic Active Pixel Sensors: MAPs; CMOS imagers

Soft X-ray Imaging is very important for:

- FEL science (soft X-ray FELs are cheaper than hard X-ray FELS)
- Biology
- Magnetism
- Atomic physics
- ...
- ...

But Soft X-ray Imaging is a neglected corner:

- 1. only few beamlines at large facilities
- 2. detecting soft X-rays is hard
 - It is difficult to get the photons in the detector
 - Photons don't create a strong signal

Soft X-ray Challenges – reaching the sensor

Attenuation Length of Photons in Si and SiO_2

At (very) soft X-ray energies, QE is limited by passive window thickness! e.g. 50 nm of SiO_2 : loss of 25% of 250 eV photons

Hybrid Pixel Array Detectors in some detail.

01/08/2019

Monolithic Active Pixel Sensor (aka CMOS imagers (CIS)

Monolithic: Collecting diodes & readout circuitry share the same substrate

Coupled to handling wafer, back-thinned, back-illuminated: 100% fill factor

Back surface delta-doped, post-processed: almost no entrance window

Monolithic Active Pixels Sensor (MAPS / CMOS)

Monolithic Active Pixels Sensor (MAPS / CMOS)

A Front-Side illuminated CMOS imager

A Back-Side Illuminated CMOS Imager

The Octopus had it already figured out...

PERCIVAL for FLASH and other low-E sources

The Percival Sensor

> 7 ADCs (+ spare) per column \Rightarrow read sensor in 7-row "groups"

- > 1408 columns + 32 dark \Rightarrow 11.5k ADCs in a 2M chip
- > 12+1(over-range)+2 (gain) bits \Rightarrow 15 (x2 for CDS) bits/pixel/frame
- > 45 LVDS output lines at 480MHz data rate for one 2M chip (20 Gbit/s)

3T pixel

Wafers with 8 sensors with 2-million pixel

From wafer to system

LTCC board

Mechanics and cooling

PowerBoard for sensor supply & biasing

Control and DAQ board

P2M Operation

- > First light November 2018!
- > Visible light, room temperature
- > 100Hz frame rate
- > Automatic gain switching works
- > First "real" system: fall 2019

What comes next?

High Frame Rate X-ray Imager for Photon Science

Current European XFEL bunch structure

Duty cycle = 0.6% 99.4 % of the time it is dark!!

Requirements for future sources

PETRA-IV (~2027)

CW-XFEL (~2028)

- Diffraction-Limited Storage Ring
- Approx continuous X-ray beams
- x 100 increase in X-ray brilliance
- Measurements from atomic to macroscopic scale, 10µs resolution

- Free electron laser
- Extremely intense X-ray pulses
- 100 kHz to 1MHz continuous bunch rate (source)
- "Flash photography" on atomic scales

Detector wish list

- ≥ 100 kHz continuous frame rate
- Multi-megapixel (>10 Mpixel)
 - Minimal dead area
- $\leq 100 \ \mu m$ pixel size
- Single photon sensitivity
- 10⁵ photon upper range
 - Noise below Poisson statistics
- Compatible with different sensors for hard / soft Xrays
- Compatible with vacuum operation, radiation hard...

Data rates – what does this mean?

- > 1 Megapixel * 100 kHz * 12 bits = 1.2 Tbit / second!
- > Data throughput per module?
 - 100 µm pixel size means 1 Megapixel = 10 x 10 cm² area
 - So (for example) 4 modules of 10 cm x 2.5 cm at 300 Gbit/s each
 - This is minimum requirement!
- > Multi-megapixel systems could have multi-terabit data throughput!

This needs: "on-the-fly date selection / vetoing / triggering" "Discrimination in Photon Science"

Hybrid pixel detectors for future experiments

Current hybrid pixel technology

Hybrid pixel detectors for future experiments

Future hybrid pixel technology

Summary Detectors

- Signal-to-noise ratio most fundamental parameter in measurements.
- A detector is always a compromise (ex. speed vs. noise). Application determines what you compromise.
- Never take a detector as a "perfect black box", be aware of limitations.
- Understanding your detector is part of understanding your science.

Enjoy the rest of the course

heinz.graafsma@desy.de