The PERCIVAL soft X-ray Detector

Jonathan Correa DESY – Photon Science Detectors IEEE – NSS 2018, Sydney

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES CFEL

PERCIVAL

in a nutshell

Energy Range	Primary: 250eV – 1keV Extended: 100eV - 3keV		
Quantum Efficiency	> 85%, uniform over pixel		
Pixel Size	27 um ²		
Active Area	1440 x 1484 pixels / 4 x 4 cm^2		
Frame Rate	120 / 300 Hz		
"Full Well"	> 10 ⁷ e-		
Resulting Dynamic Range	10⁵ photons (@ 250eV)		
Sensor Output	Digital, LVDS		
Buttability	2-side (adjacent edges)		
Exposure Mode	FEL: all photons in < 300 fs Synchrotron: Quasi-continuous		

DESY. | The PERCIVAL soft X-ray Detector | Jonathan Correa, Oct. 12th 2018, IEEE-NSS, Sydney

Science Motivation

Watching biomolecules in action ... and more

- Making optimal use of the brilliance of today's photon sources requires
 - Single-shot imagers with suitable frame rates
 - Very large dynamic range

 single-photon discrimination to
 10⁴ photons/pixel/frame and more
 - Millions of pixels with little/no dead area
- In the soft X-ray regime
 - Scientific interest e.g. biosystems, weakly scattering samples
 - Particular challenge: small signal requires very low noise
 - Particular challenge: sensor surface

P2M Sensor

Designed by partner Rutherford Appleton Lab / STFC

- CMOS imager (180nm technology)
- On-chip digitization (11520 ADCs)
- 3 auto-adjusting gain levels (per pixel, per frame, overflow)
- 1408 × 1484 pixels, 27μm × 27μm
- 4 × 4 cm² continuous imaging area (stitched sensor)
- Data rate at 300Hz frame rate is 20 Gbit/s, streamed out over 45 LVDS lines
 (240 MHz, double data rate)

P2M Sensor

Designed by partner Rutherford Appleton Lab / STFC

1408 x 1484 pixel P2M

Α	В	В	С
D	Е	Е	F
D	Е	Е	F
G	н	н	I

stitching blocks

3520 x 3710 pixel variant, P13M ~ 10x10cm²

Α	В	В	В	В	В	С
D	Е	Е	Е	Е	E	F
D	Е	Е	Е	Е	Е	F
D	Е	E	Е	E	E	F
D	Е	E	E	Е	E	F
D	Е	Е	Е	Е	Е	F
G	н	н	н	н	н	I

P2M Sensor

Designed by partner Rutherford Appleton Lab / STFC

- 3 auto-adjusting gain levels(per pixel, per frame, overflow)
- Readout sequentially tests all three overflow configurations for each pixel against threshold
- Only best candidate digitized & sent to DAQ

Backside Illumination

How to enable soft X-rays to interact in the sensitive volume

Entrance Window Post-processing

How to enable soft X-rays to interact in the sensitive volume

High sensitivity to low-energy radiation requires:

- Absence of passive material and traps
- Optimized field geometry at sensor surface

Post-Processing for PERCIVAL

- Prototype Sensor post-processed by NASA's JPL "delta-doping"
 - Pioneered ultra-thin entrance windows (few nm)
 - Bureaucratic difficulties mainly make access difficult & time-consuming
 - TS sensors processed by JPL give nice soft X-ray performance
 - Unfortunately e.g. not possible to BSI-process 2nd generation test devices in reasonable time
- P2M sensor post-processing
 - JPL remains a key partner and will process wafers
 - Exploring alternate routes to "good" post-processing (for some applications 10s of nm are acceptable)
 - EMFT currently a partner in tests (bonding, thinning, pad exposure)
 - Some routes to thicker dopant layers (10s to 100s of nm) exist, not tried yet
 - Easier-to-access MBE-based post-processing capable of processing both wafers and single (prototype) sensors direly needed

DESY. | The PERCIVAL soft X-ray Detector | Jonathan Correa, Oct. 12th 2018, IEEE-NSS, Sydney

In-vacuum detector head 😥

sensor

- Several hundred LVDS control & data lines, are (re)distributed here
- Sensor will be cooled to ~ -30°C
- 2-side buttable
- movable

LTCC routing & actual board

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

- Carrier board hosts
 - FPGA running finite state machine
 - Mezzanine board (also AGIPD, Lambda) reordering data for easier processing streaming out 20 Gbit/s data
 - Interface to slow control, facility information, trigger

Mezzanine for data streamout shared by AGIPD, LAMBDA, and Percival

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

Control & DAQ

- 20 Gbit/s from one sensor (reading full images: 300 Hz, 2M pixels, 30 bit/pixel incl. CDS)
- Virtual hdf5 developed in part for this project
- Python interface & Odin GUI interface
- API for link to Tango, DOOCs, EPICS, etc.

DESY.

- Software Framework for Characterization
 - Data validation
 - Calibration constants
 - Sensor characterization
- Testing

Prototype Performance - Noise

Noise

- reasonably low parameter dispersion between different samples (and wafers)
- Noise below Poisson limit
- preliminary tests indicate ~10 e⁻ rms reachable by multiple sampling

Prototype Performance Gains

• Automatic gain adjustment works

- 3 gains accessible via overflow switch architecture
- Dynamic range to 3.5 Me⁻ i.e. 50k photons at 250eV

Prototype Performance

Backside-illuminated (BSI)

- Imaging at 92 eV, single-shot at FLASH
- Airy rings matching output
- CCE (lower limit to QE) measured at ~70% above 400 eV

P2M Operation

- First light
- Visible light, room temperature
- 100Hz frame rate (streamout speed of full acquisition system still ramping up)
- Automatic gain switching works
- Deployment. Two more system working and providing, last one at Elettra: 150Hz

Project Status & Outlook

P2M FSI undergoing benchtop testing

- P2M system operates, saw first light
- P2M sensor demonstrates auto gain switching in response to illumination
- Detailed characterization (including bias tweaking etc.) ongoing
- Chip functionality at 300Hz frame rate demonstrated, full readout & system ramping up to this
- P2M backthinned sensor in hand, awaiting wirebonding
- Expect first X-ray tests in Xmas 2018
- First delta-doped P2M BSI ~ March 2018

Thanks to Percival Collaborators:

P2M FSI undergoing benchtop testing

DESY:

Cornelia Wunderer Alessandro Marras Steve Aplin Peter Goettlicher Frantisek Krivan Manuela Kuhn Sabine Lange Magdalena Niemann Frank Okrent Igor Shevyakov Sergej Smoljanin Manfred Zimmer Heinz Graafsma

RAL:

lain Sedgwick Ben Marsh Nicola Guerrini

Elettra:

Giuseppe Cautero Dario Giuressi Giovanni Pinaroli Luigi Stebel Ralf Menk

C

Diamond:

Alan Greer Tim Nicholls Ulrik Pedersen Nicola Tartoni

PAL: HyoJung Hyun KyungSook Kim Seungyu Rah

Soleil & DESY: Benjamin Boitrelle

JPL: April D. Jewell Todd J. Jones Michael E. Hoenk Shouleh Nikzad

EMFT:

Andreas Drost Christof Landesberger Armin Klumpp

Backup Slides

PRCIVAL

Post-Processing is necessary

Science challenges – two examples

- Water window offers unique view of biological systems:
 Between Carbon and Oxygen edges, water is transparent but carbon absorbs
- 282 eV to 533 eV photons
- Laser-Induced Electron Diffraction: re-scattered electrons can give simultaneous access to sub-100pmspatial and sub-fs temporal resolution
- Sweet spot for these measurements is around 500 eV electron energy (plus few keV acceleration from optics)

Soft X-rays Ekberg et al. 2015

The full PERCIVAL system

~~~~~



- 2 Mpixels
- ~4×4cm<sup>2</sup> area
- 2-side buttable
- 27µm pixel pitch
- available ~2017



CIVAL

### Soft X-ray Challenges – reaching the sensor



#### Attenuation Length of Photons in Si and SiO<sub>2</sub>



At (very) soft X-ray energies, QE is limited by passive window thickness!

e.g. 50 nm of SiO<sub>2</sub>: loss of 25% of 250 eV photons



### **Monolithic Active Pixel Sensor**



Monolithic: Collecting diodes & readout circuitry share the same substrate commercial standard 0.18um CMOS techn, over high-resistance thick epi Coupled to handling wafer, back-thinned, back-illuminated: 100% fill factor Back surface delta-doped, post-processed: almost no entrance window



### **Prototype Sensors & Beamline Tests**





- > TS1 & TS2 (pixels & ADCs)
  - FSI fall 2012
  - BSI 1<sup>st</sup> round Feb 2014
  - BSI 2<sup>nd</sup> round Mar 2015

> TS3 (fast digital readout)

- Fall 2012
- > TS1.1 (capacitors, noise)
  - Jul 2014
- **>** TS 1.2

(added amplification for better noise, other crucial improvements over TS1)

• Apr 2015

- > TS1 FSI (all parasitic)
  - PETRA III P04, May, Aug, Nov, Dec 2013, Jan 2014
- > 1<sup>st</sup> round BSI TS1
  - Elettra TwinMic, Mar 2014
- > 2<sup>nd</sup> round BSI TS1
  - Diamond I10, Mar 2015
  - Elettra CiPo, May 2015
  - FLASH BL 2, Dec 2015
  - PETRA III P04, Mar 2016
  - PETRA III P04, Apr 2016
  - PTB@BESSY, May 2016







### **Back-side Illumination**







Epi-Layer (~ 12 µm)

**Oxides and Metal Layers** 

Carrier Wafer

- > Front-side illuminated (FSI) sensor
- > Photons have to traverse oxides and metals
- > Limited and non-uniform sensitivity to soft X-rays

- > Back-side illuminated (BSI) sensor bonded to carrier wafer
- > High and uniform soft X-ray sensitivity possible
- > Percival prototypes are BSIprocessed at JPL (delta-doping)



### **Noise vs Poisson Limit**



VAL

### **Post-Processing needs**



- > Attenuation lengths in Si / SiO<sub>2</sub> at or below 100nm for soft X-rays
- > Attenuation lengths for few-keV electrons in Si are on the order of 10s of nm
- Interaction must happen in active Si, and generated charge cloud must reach the circuitry

**>** Requires:

- Negligible passive layer
- Negligible traps
- Optimized geometry of electric Cornelia Wunderer | The Percival 2-Megapiixel Soft X-ra Percival soft X-ray Imager | Cornelia Wunderer, 25.6.2018



Attenuation Length of Photons in Si and SiO<sub>2</sub>

### **Post-Processing needs**



- > Attenuation lengths in Si / SiO<sub>2</sub> at or below 100nm for soft X-rays
- > Attenuation lengths for few-keV electrons in Si are on the order of 10s of nm
- Interaction must happen in active Si, and generated charge cloud must reach the circuitry

**>** Requires:

- Negligible passive layer
- Negligible traps
- Optimized geometry of electric Cornelia Wunderer | The Percival 2-Megapiixel Soft X-ra Percival soft X-ray Imager | Cornelia Wunderer, 25.6.2018



Attenuation Length of Photons in Si and SiO<sub>2</sub>

### **Lateral Overflow**

PERCIVAL

