

A. Allahgholi¹, J. Becker¹, A. Delfs¹, R. Dinapoli², P. Göttlicher¹, H. Graafsma^{1,5}, D. Greiffenberg², H. Hirsemann¹, S. Jack¹, <u>A. Klyuev¹</u>, H. Krueger⁴, M. Kuhn¹, S. Lange¹, T. Laurus¹, A. Marras¹, D. Mezza², A. Mozzanica², J. Poehlsen¹, S. Rah⁶, B. Schmitt², J. Schwandt³, O. Shefer-Shalev¹, I. Sheviakov¹, X. Shi², S. Smoljanin¹, U. Trunk¹, J. Zhang² and M. Zimmer¹ 1 – Deutsches Elektronen-Synchrotron, 2 – Paul Scherrer Institute, 3 – Universität Hamburg, 4 – Universität Bonn, 5 – Mid Sweden University, 6 – Pohang Accelerator Laboratory

Read-ou

The European XFEL constraints and AGIPD features

XFEL time structure **Scientific opportunities:** Study of a very small objects: Single photons single (bio-)molecules 352 Imaging of a non-regular mages structures: up to non-crystals 10^₄ photons New materials and fast @ **12keV** 220ns processes studies 1k x 1k pixels

Main parameters

Operating principle	Charge integrating	
Energy range	6 keV-18 keV	
Frame rate	> 4.5 MHz (burst mode)	
Memory depth	352 frames	
Pixel size	(200 μm)²	
Pixel technology	Hybrid Pixel Technology	
Detector spatial configuration	Variable (modular)	
Module size	2.5×10.5 cm ² , 128×512 pixels	
Dynamic range	1 to 10⁴ photons/pixel/frame at 12.4 keV	
Dynamia gain gwitabing	Vec (2 gaine)	

Dynamic gain switching Yes (3 gains) Veto/Trigger Yes (overwriting of frame RAM) Yes (in high gain) Single Photon sensitivity

- Preamplifier with adaptive gain by insertion of additional feedback capacitors to lower sensitivity and increase dynamic range once a defined threshold is crossed
- Correlated Double Sampling (CDS) stage to remove reset noise and reduce low frequency noise,
- 2 selectable gains possible
- Analogue memory, which can store 352 images
- Read out of stored signals are through the pixel buffer, column buffer and off-chip driver in between the bunch trains (within 25 ms out of 99 ms)

AGIPD 1Mpix systems @XFEL

- One 1MPix AGIPD operational at SPB/SFX instrument Second 1MPix AGIPD is ready for MID instrument
- Operation in vacuum Detector integrated into the cage at the beamline

Data processing and calibration at DESY

Data rata	

Calibration flows: CFEL

ASIC performance

- Image of colloidal sample, left single image, right time average
- Absence of photons encoded as black color in logarithmic scale
- Each image contains pixels in all three gain stages simultaneously.
- No beam stop: direct synchrotron beam was recorded besides scattering pattern

Histogram of data from a single pixel Average intensity: 0.3 photons per 200 ns, corresponding to a count rate of 1.5 Mcps/pixel or 37.5 Mcps/mm²

0.

0 0 0 0

0⁰ 0

. .

RMS noise of 320 electrons at 5.2 MHz

First User Experiments @ European XFEL

0

To the PLC/

Control PC

Future systems: in-vacuum read-out

Commissioning tasks for the AGIPD @XFEL

- Remote upgradeable over Ethernet firmware
- **XFEL** format compatible data output
- Accepting clock & control input

High voltage supply

- Generating interlock input: temperature, live signal etc.
- Exchanging the front-end modules due to the HV failures

F. Westermeier and M. Sprung for experiments and operations at PETRA P10.

I. Vartanians, U. Lorenz, A. Singer, K. Schlage and H.-C. Wille for experiments and

R. Bradford, D. M. Kline and S. Stoupin for experiments and operations at APS BM1

A. Burkhardt, P. Heuser, J. Kallio, V. Lamzin, V. Mariani, A. Meents and P. Fischer for

- Support the users with data correction
- Search for the first XFEL beam
- Generating output for the **official start of XFEL!**

Ongoing:

- Increasing the data output rate
- Switching to faster (25 MHz) data read-out
- Implementation of the current source scan in quasi-burst mode due to longer integration times
- Moving from double-frame read-out to Analog and Gain data as a single image (bit splitting)

4MPix AGIPD for SFX at SPB/SFX instrument

- Si sensors
- 56 sensor modules divided into two halves
- 22cm x 44cm sensitive area each
- 400 mm travel range along the beam
- Delivery December 2018

- High-Z sensors
- 16 sensor modules one monolithic block
- Delivery with Si sensors in November 2018
- Upgrade to High-Z in summer 2019

experiments and operations at PETRA P11

UH

Acknowledgments

operations at PETRA P01.

💾 Universität Hamburg

universität**bonn**

References

- [1] M. Altarelli et al., doi:10.1080/08940880601064968.
- [2] X. Shi et al., Challenges in chip design for the AGIPD detector, doi:10.1016/j.nima.2010.05.038 [3] U. Trunk et al., AGIPD - The Adaptive Gain Integrating Pixel Detector for the European XFEL. Development and Status, doi:10.1109/NSSMIC.2011.6154392.
- [4] J. Becker et al., Performance tests of an AGIPD 0.4 assembly at the beamline P10 of PETRA III, doi:10.1088/1748-0221/8/06/P06007
- [5] A. Allahgoli et al., The Adaptive Gain Integrating Pixel Detector AGIPD, J. Instrum. (2015) IWoRiD conference proceedings