Requirements for and developments 2D detectors for the FEL.

Heinz Graafsma; DESY and European XFEL ZFEL workshop: "Nanoworld in action" June 2010

- pnCCDs for FLASH and LCLS
- The European X-ray Free Electron Laser
- The Detector Challenge
- The ongoing 2D Detector Projects:
 - LPD
 - DSSC
 - AGIPD

Conclusion

DAQ

Simulations (HORUS)

Development of the DESY Campus -> Also new detectors

FLASH: a 1.2 GeV FEL

pnCCD: 1024 x 512, 30 cm²

pixel 3.7

Q

Imaging

Area: 29.6 c

7.8 x 3.7 cm² = 29.6 cm² 75 x 75 μm² 1024 parallel read nodes 2 e⁻ @ 250 fps

for 1 keV X-rays the system delivers $2k \times 2k$ resolution points

CAMP packed up in Hamburg: • beginning of October 2009 • 40 containers

• 10 tons

many people involved in the commissioning

The European XFEL in Hamburg

The official start of the European XFEL: 30 November 2009!

Overall layout of the European XFEL

XFEL site in Hamburg/Schenefeld

H. Graafsma | ZFEL workshop: "Nanoworld in action"; June 2010 | Page 14

... after construction (computer simulation)

Injector building at DESY

The end station building

Challenge: Different Science

Single shot experiments

Combine 10⁵-10⁷ measurements

Electron bunch trains; up to 2700 bunches in 600 μ sec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 27 000 bunches per second).

	Instrument	Brief description of the instrument
Hard X-rays	SPB	Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules – Structure determination of single particles: atomic clusters, bio-molecules, virus particles, cells.
	MID	Materials Imaging & Dynamics –Structure determination of nano- devices and dynamics at the nanoscale.
	FDE	Femtosecond Diffraction Experiments – Time-resolved investigations of the dynamics of solids, liquids, gases
Soft X-rays	HED	High Energy Density Matter – Investigation of matter under extreme conditions using hard x-rays, e.g. probing dense plasmas.
	SQS	Small Quantum Systems – Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena.
	SCS	Soft x-ray Coherent Scattering –Structure and dynamics of nano-systems and of non-reproducible biological objects using soft X-rays.

Some Requirements and Specifications

H. Graafsma; Journal of Instrumentation (Jinst), JINST 4 P12011, (2009)

Requirements:

- •1k x 1k (4k x 4k) pixels
- •"no noise"
- •10⁴ ph/pixel/pulse
- •Few 100 images/train

Consequences: •Integration detectors

- Low noise
- In-pixel frame storage
- Multiple gains orNon-linear gain

17th July 2006:46 pages;covering 5 areas

6 Eols received; different consortia and technologies

3 Eols selected to develop full proposal Call by the:

European Project Team for the X-ray Free-Electron Laser

for:

Expressions of Interest

to:

Develop and Deliver Large Area Pixellated X-ray Detectors.

Deadline: 30 September 2006 http://xfel.desy.de/xfelhomepage

Radiation damage study

Charge cloud/explosion study

Large Pixel Detector (LPD)

DEPFET Sensor with Signal Compression (DSSC)

Adaptive Gain Integrating Pixel Detector (AGIPD)

Hybrid Pixel Technology

The Large Pixel Detector (LPD) project

The Large Pixel Detector

Multi-Gain Concept

- > Dynamic Range Compression required
- > Relaxes ADC requirements
- > Fits with CMOS complexity

Threefold analogue pipeline On-chip ADC

The Large Pixel Detector

- Sensor tile detail (exploded view)
 - Hidden wire bonds permit 'edge-to-edge' sensors
 - Sensor bias communicated via ASC and interposer

> 128 x 32 pixels

The Large Pixel Detector

> Super modules:

- > 8 x 2 tiles
- > (256 x 256 pixels)

The DEPFET Sensor with Signal Compression (DSSC) project

DSSC - DEPMOS Sensor with Signal Compression (MPI-HLL)

- > DEPFET per pixel
- > Very low noise (good for soft X-rays)
- > non linear gain (good for dynamic range)
- > per pixel ADC
- > digital storage pipeline
 - Hexagonal pixels ~200µm pitch
 - combines DEPFET
 - with small area drift detector (scaleable)

- > MPI-HLL, Munich
- > Universität Heidelberg
- > Universität Siegen
- > Politecnico di Milano
- > Università di Bergamo
- > DESY, Hamburg

DEPMOS Sensor with Signal Compression

DEPFET: Electrons are collected in a storage well

DEPMOS Sensor with Signal Compression

DEPFET Active Pixel Sensor Detector

- connect detector units to ladder
- 1 ladder = 128x 512 pixels
- 8 ladders = 1 quadrant
- 4 quadrants = 1k x 1k detector

The Adaptive Gain Integrating Pixel Detector (AGIPD) project

The Adaptive Gain Integrating Pixel Detector The AGIPD consortium:

PSI/SLS -Villingen: chip design; interconnect and module assembly

Universität Bonn: chip design

Universität Hamburg: radiation damage tests, "charge explosion" studies; and sensor design

DESY: chip design, interface and control electronics, mechanics, cooling; overall coordination

Some Facts

5 years development

~ 20 people

Some Milestones

First 16x16 pixels prototype Definition of final design Production, assembly and test End 2009 End 2010 >2013

The Adaptive Gain Integrating Pixel Detector

The Adaptive Gain Integrating Pixel Detector

High dynamic range:

Dynamically gain switching system

Overview of the chip test board

The Adaptive Gain Integrating Pixel Detector

High dynamic range:

Dynamically gain switching system

AGIPD02

- 16 x 16 pixel prototype
- Adaptive gain
- Different flavors of storage
- 100 frames per pixel

The 1k x 1k detector

How to find the best compromises ?

Many conflicting parameters:

- > Pixel size versus number of frames
- > Pixel size versus dynamic range
- > Pixel size versus radiation hardness
- > Speed versus noise

This is a surface in multi-dimensional space:

- > How does this surface look like ?
- > Where do you want to sit ?

Detector simulation program

HORUS: a simulation program for HPADs

Data Storage Issues (C. Youngman-WP76)

Assume:

- > 3 x 1 Megapixel 2D Detector Systems
- > 2 Byte/pixel
- > 500 frames per train are read taken and read out
- > 10 trains per second
- Running year: 200 days = 4800 hours
- > Running efficiency: 10%
- > Good-frame efficiency/compression: 25% (is this realistic?)

 \rightarrow ~13 Pbyte/year (1 Petabyte = 10⁶ Gigabyte =10¹⁵ Byte)

Problem: No easy Veto system

- → Each experiment is specific
- → Need to keep the data to refine analysis

Concluding remarks

- > Radiation damage and charge explosion studies well advanced (general interest)
- > 3 large 2D Detector development projects ongoing:
 - LPD: 3 parallel gains; analogue storage
 - DSSC: non-linear gain; digital storage
 - AGIPD: 3 switched gains; analogue storage
- > HORUS available for detector and science simulation
- Low energy detector exist (ex: pnCCD)
- DAQ and Computing in start-up phase (HEP like structures)
- > Detector development is expensive!
- > Detector developments go across many disciplines (HEP, SR, FEL, Astro, Medical, Military, Security,....)
- > Joint effort is the winning combination

