Development of high-Z sensors for pixel array detectors

David Pennicard, DESY

Heinz Graafsma, Sabine Sengelmann, Sergej Smoljanin, Helmut Hirsemann, Peter Goettlicher

Vertex 2010, Loch Lomond, 6-11 June 2010

Development of high-Z sensors for pixel array detectors

- > Applications of high-Z pixel arrays
- > Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- > Work on pixellated Ge sensors at DESY
- > Summary

High-Z materials for X-ray absorption

X-ray absorption / interaction

David Pennicard | Development of high-Z sensors for pixel array detectors| Vertex 2010, Loch Lomond, 6-11 June 2010 | Page 3

High-Z materials for X-ray absorption

X-ray absorption / interaction

Synchrotron applications

- > PETRA-III at DESY
 - Beamline energies to 150keV (mostly 50keV)
 - Materials science apps

- > High-E scattering and tomography
 - Structure at buried interfaces, grain mapping...
- Most promising application
 - Si pixels already successful
 - Tolerance of expense and infrastructure

Medical and small animal imaging / CT

- Imaging with a high-E, broad spectrum source
 - 15-25 keV mammography
 - 30-120 keV torso
- > Hybrid pixels allow energy measurement
 - Distinguish tissue, bone, contrast
- > Biological research (small animal)
- Medical imaging
 - Cost / infrastructure
 - Tiling of large areas

Johnson 2007 - Material differentiation by dual energy CT: initial experience

> HiZPAD (Hi-Z sensors for Pixel Array Detectors)

- ESRF (coordinator), CNRS/D2AM, DESY, DLS, ELETTRA, PSI/SLS, SOLEIL
- CPPM, RAL, University of Freiburg FMF, University of Surrey, DECTRIS
- Predominantly processing / bonding / testing of commercial CdTe, CZT

> Medipix3

- See Richard Plackett's talk
- Inter-pixel communication allows thick high-Z sensors

Development of high-Z sensors for pixel array detectors

- > Applications of high-Z pixel arrays
- > Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- > Work on pixellated Ge sensors at DESY
- > Summary

Which high-Z material to use?

X-ray absorption / interaction

Fluorescence effects

- Absorption by k-shell can produce high-E fluorescence photons
 - >~30keV for CdTe
 - >~10keV for GaAs and Ge
- > Degrades performance above k-shell E
- > Effect greater in higher-Z material
 - Higher fluorescence yield
 - Longer absorption lengths
- Inter-pixel communication could compensate

Fluorescence effects

- Absorption by k-shell can produce high-E fluorescence photons
 - >~30keV for CdTe
 - >~10keV for GaAs and Ge
- > Degrades performance above k-shell E
- Effect greater in higher-Z material
 - Higher fluorescence yield
 - Longer absorption lengths
- Inter-pixel communication could compensate

General issues with high-Z sensors

- Mostly) compound semiconductors
- Material quality
 - Charge trapping one carrier produces most of signal
 - Leakage current, resistivity
- Material homogeneity and area
 - Grain boundaries want single crystal
 - Dislocations, inclusions
- > Pixellation
 - Diode, Schottky, resistive...
- > Bump bonding
 - Temperature tolerance

Cadmium Telluride

- > Used for γ-ray spectroscopy
- Commercially-grown wafers:
 - Single-crystal now 3", 1mm-thick
 - Defects affect uniformity
- > Properties
 - 1.44eV bandgap (room T)
 - High resistivity
 - $\mu_e T_e \sim 3*10^{-3} \text{ cm}^2/\text{V}$
 - Mean drift distance of cm
 - Use electron readout!
 - $\mu_h T_h \sim 2*10^{-4} \text{ cm}^2/\text{V}$
 - Mean drift distance of mm

Szeles 2003, CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications

Cadmium Telluride

- > Used for γ-ray spectroscopy
- Commercially-grown wafers:
 - Single-crystal now 3", 1mm-thick
 - Defects affect uniformity
- > Properties
 - 1.44eV bandgap (room T)
 - High resistivity
 - $\mu_e T_e \sim 3*10^{-3} \text{ cm}^2/\text{V}$
 - Mean drift distance of cm
 - Use electron readout!
 - $\mu_h T_h \sim 2*10^{-4} \text{ cm}^2/\text{V}$
 - Mean drift distance of mm

M. Chmeissani et al. 2004, "First Experimental Tests With a CdTe Photon Counting Pixel Detector Hybridized With a Medipix2 Readout Chip"

Cadmium Telluride

- > Typically use Schottky or ohmic contacts (Pt, Au, In)
- > Temperatures above 200 °C degrade transport properties
 - Low temp sputtering / electroless deposition of contacts
- Low-temp bump bonding (Pb/Sn, In)
 - CdTe relatively fragile
- Demonstrated with Medipix2, XPAD3

Medipix2 quad (FMF)

)10 | Page 15

David Penr

CdTe Medipix2 Assemblies

- > 1mm CdTe (Acrorad, 3")
 - Ohmic pixel contacts

>Hexa (2x3) 55 µm pixel pitch
28x43 mm² active area,390,000 pixels
>Flat field & filter

Produced by

A. Fauler, A. Zwerger, M. Fiederle Freiburger Materialforschungszentrum FMF Albert-Ludwigs-Universität Freiburg

CdZnTe

- Typically Cd_{0.9}Zn_{0.1}Te
 - Increased bandgap (1.57eV) lower current
 - Better single-element spectroscopic performance
- Produced in large *polycrystalline* ingots
 - Crystal properties vary between grains
 - Good single-crystal segments up to 20*20mm²

Gallium Arsenide

- > Better single-crystal production (6")
- > 1.43eV bandgap (low leakage I)
- > μ_e >> μ_h
 - Short hole mean drift distance (100's of μm)
 - Rely on electron readout
- Problem: Shallow defects low resistivity
- Semi-insulating GaAs
 - Compensation of shallow defects
 - Operated as photoconductor / Schottky
- > Epitaxial GaAs
 - Growth with fewer shallow defects
 - Operated as diode

Gallium Arsenide – Semi insulating

- > As-rich growth produces deep defects (EL2)
 - Compensate shallow traps
 - But reduce electron lifetime (~1ns)
- > Cr compensation promising
 - Dope n-type during growth, then overcompensate p-type with Cr diffusion
- Metallised contacts
 - Au for photoconductor (right)
 - Pt-Ti-Au for Schottky
- > Moderate temp tolerance, physically fragile
 - Bonding at low temp
 - Indium / low T solder

JINR Dubna, Tomsk State University

Chromium-compensated GaAs

- > Medipix2
- > 300µm thick (1mm possible)
 - Photoconductive sensor
 - Operated at 500V here
- Full active volume, 90% CCE

Figure 8: Flatfield corrected image of the head of an anchovy.

L. Tlustos (CERN), Georgy Shekov (JINR Dubna), Oleg P. Tolbanov (Tomsk State University) "Characterisation of a GaAs(Cr) Medipix2 hybrid pixel detector", IWorid 2009

Epitaxial GaAs

- > VPE growth of GaAs substrate
 - P-i-n structure grown
 - Etching of mesa to form pixels
 - Thinning of material before bonding
- > Thickness limited
 - 140µm sensor required cooling to -20 ℃

Kostamo 2008, "GaAs Medipix2 hybrid pixel detector"

Development of high-Z sensors for pixel array detectors

- > Applications of high-Z pixel arrays
- > Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- > Work on pixellated Ge sensors at DESY
- > Summary

Germanium pixels

- High-purity, high uniformity 95mm Ge wafers available
 - Negligible trapping
 - Low doping
- Narrow bandgap means cooled operation needed
 - Per pixel current must be within ROC limits (order of nA)
 - Est. -50 °C operation with Medipix3 (55µm)
 - Need to consider thermal contraction, etc.
 - "Engineering problems"
- Fine pixellation and bump-bonding must be developed

Pixel detector production at Canberra (Lingolsheim)

- Diodes produced by lithography (p-on-n)
 - Thinned germanium wafer (0.5-1.5mm)
 - Li diffused ohmic back contact
 - Boron implanted pixels
 - Passivation, AI metallisation
- Plan 55µm, 110µm and 165µm Medipix3
 - First run singles (14*14mm²), 500µm
 - Second run 2*3 (28*42mm²)
 - Option of thicker Ge

Bump bonding at Fraunhofer IZM (Berlin)

- Low temp bonding required
- Bonds must tolerate thermal contraction
 - 3.5µm max displacement for ΔT=100K
 - In remains ductile at LN₂!
- Indium bump bonding
 - Bumps on ASIC and sensor
 - Thermosonic compression at low T
 - Possible reflow above 156 °C
- Currently performing tests on Ge diodes

T Fritzsch, H Oppermann, O Ehrmann, R Jordan

David Pennicard | Development of high-Z sensors for pixel array detectors| Vertex 2010, Loch Lomond, 6-11 June 2010 | Page 25

Medipix3 module readout

- > 2*6 chip module (28*85mm)
 - Tilable
 - Full-parallel readout (2000fps)
- Cooling through thermal vias
 - Ceramic and heat spreader match Ge CTE
- Readout FPGA board
 - 10 GBE for high-speed readout
 - Improved infrastructure needed

Conclusions

- Demand for high-Z hybrid pixels
 - Material science, biology / medicine, astronomy...
- Promising results from CdTe / CZT, GaAs
 - Commercial CdTe / CZT improving
 - Improved GaAs compensation
- Ge pixels could provide high-uniformity sensors (albeit without room-temp operation)

Thanks for listening

David Pennicard | Development of high-Z sensors for pixel array detectors| Vertex 2010, Loch Lomond, 6-11 June 2010 | Page 28

What do hybrid pixels offer?

- Current generation (Pilatus, Medipix2, XPAD2/3)
 - Noise rejection (photon counting)
 - High speed
 - Direct detection for small PSF
- Future detectors (Eiger, Medipix3, XPAD3+)
 - Deadtime-free readout
 - Inter-pixel communication (Medipix3)
 - Correct for charge sharing
 - Allows use of thick sensors
 - Energy measurement
 - Medipix3 provides 2 or 8 bins (55µm or 110µm)

Medipix3

- > 256 * 256 pixels, 55µm pitch
 - 14.1 * 14.1 mm² area
- > Photon counting
- > 2 counters / pixel (12bit)
 - Continuous R/W
 - or 2 energy bins
- > Charge summing mode
- > Optional 110µm pixels
 - 8 energy bins
- > 2000fps
 - More with reduced counter depth

Signal summing at nodes: Node with highest signal "wins"

Medipix3

- > 256 * 256 pixels, 55µm pitch
 - 14.1 * 14.1 mm² area
- > Photon counting
- > 2 counters / pixel (12bit)
 - Continuous R/W
 - or 2 energy bins
- > Charge summing mode
- > Optional 110µm pixels
 - 8 energy bins
- > 2000fps
 - More with reduced counter depth

Signal summing at nodes: Node with highest signal "wins"

Medipix3 circuitry

Effects of charge sharing

- Loss of efficiency at pixel corners
 - Typically, set threshold to E/2 with mono beam
- Loss of energy resolution

Medipix3 charge summing mode

- > Allows large sensor thickness while maintaining energy resolution
 - No efficiency loss unless charge cloud > pixel size

Davia remnicara | Development or high-2 sensors for pixel analy detectors] venex 2010, Loch Lonnond, o-11 June 2010 | rage 34

Alternative methods of processing Ge

- Mechanical segmentation of contacts
 - Frequently used for large sensors
 - Limits on pitch
- > Amorphous Ge contacts (e.g. LBNL, LLNL)
 - Similar to Schottky
 - Higher leakage current
 - but allows double-sided strips

