

Megapixels @ Megahertz AGIPD Detectors for the European XFEL and beyond

J. Becker¹, A. Delfs¹, R. Dinapoli², P. Göttlicher¹, H. Graafsma^{1, 5}, D. Greiffenberg², H. Hirsemann¹, S. Jack¹, A. Klyuev¹, H. Krüger³,
M. Kuhn¹, T. Laurus¹, A. Marras¹, D. Mezza², A. Mozzanica², D. Pennicard¹, J. Poehlsen¹, I. Sheviakov¹, B. Schmitt², J. Schwandt⁴, X. Shi², S. Smoljanin¹, **U. Trunk**¹, J. Zhang², M. Zimmer¹
¹DESY, Photon Science - Detector Group, Hamburg, Germany
²Paul-Scherrer-Institut (PSI), SLS Detector Group, Villigen, Switzerland
³University of Bonn, Bonn, Germany
⁴University of Hamburg, Hamburg, Germany
⁵Mid Sweden University, Sundsvall, Sweden

Outime		
	The AGIPD System	European XFEL Single molecule imaging Requirements
	AGIPD 1.1 Readout ASIC	Architecture Dynamic gain switching Performance
	AGIPD Detector systems gen. 1: SPB & MID endstations	Overview First user experiments Results
	AGIPD Detector Systems gen. 2: SFX & HiBEF endstations	Readout boards Optical communications Cooling and mechanics
	New ASICS: AGIPD 1.2 and ecAGIPD	AGIPD 1.2 Electron-collecting AGIPD AGIPD06 demonstrator
	Beyond AGIPD	
	Conclusion	Summary Outlook
Ulrich Trunk, 21st iWoRiD, Κολυμβάρι (Κρήτη), 09. July 2019		

Outline

European XFEL properties

AGIPD Scientific Case: Single Molecule Imaging & SFX

AGIPD 1.1 ASIC

AGIPD 1.1 ASIC

Adaptive gain switching

+5000 photons with 1% nonlinearity.

Ulrich Trunk, 21st iWoRiD, Κολυμβάρι (Κρήτη), 09. July 2019

Protons@LABEC

AGIPD Detector noise

AGIPD 1Mpix Systems:

Calibration

Feed calibration frame work with

- Pulsed capacitor dynamic range scans for all memory cells used
- Cu- K_{α} data at XFEL
- Dark data for High and Medium gain level

@ European XFEL

on DESY Maxwell cluster

Calibration: $\leq 4h$

- 352 memory cells
- 3 Gains + 3 Offsets
- ≈138,000,000 fits / module
- 16 Modules $\rightarrow 2.2 \times 10^9$ constants
- computation time, fit quality, non-constant fit ranges

Resolved structure of CTX-M-14 β-lactamase

XFEL-2012 collaboration "Megahertz serial crystallography" <u>Nat Communications</u>9(1), 4025 (2018) doi:10.1038/s41467-018-06156-7

C-Terminus

N-Terminus

AGIPD 4M Detector for SFX In-Vacuum Cooling

AGIPD 1M Detector for HiBEF @HED Endstation of European XFEL

The HiBEF (Helmholtz International Beamline for Extreme Fields) experiment @ EuXFEL needs a 1Mpix detector for E_{ph}≥25keV

- The existing AGIPD detector collects positive charges (holes)
 - Easier to realise radiation hard sensors
 - Slower less demanding to handle large charges (circuit wise)

AGIPD is not suitable for experiments with photons above ~15keV
 The Silicon sensor gets inefficient ~15keV

- High-Z Semiconductors, esp. GaAs promise efficient sensors for E_{ph}≥25keV
- Composite (III/V) Semiconductors feature relatively short charge carrier lifetimes
- Collection of Electrons (i.e. the fast component) is required

New ASICs: AGIPD 1.2 and ecAGIPD

AGIPD 1.2:

- Improve Med<->Low gain detection
- Modified storage cells
- Taped out Aug. 2018
- Back mid April 2019
- Shows ≈ 30% better 'gain separation' from wafer testing (no burst readout)
- Module production at IZM and ADVACAM under way

- Triple-well structure at negative (V_{diode}~-1V) voltage containing
 - Input protection diode
 - Current source for test stimulus = current mirror driven by existing source
 - Feedback switches
- Modified Preamp
 - New baseline at ~400mV
- Discriminator of opposite polarity
- Changed gain encoding
 - Hi <-> Lo
- Swapped output pads

ecAGIPD-Preamp

- Higher open-loop gain (29 vs. 19)
- Same bandwidth (-3dB @ ~500MHz)
- Same noise density and power consumption

ecAGIPD: AGIPD06 Prototype

ecAGIPD: AGIPD06 Prototype

Beyond AGIPD

European XFEL operation will change in the 2nd half of the 2020s. Currently 2 additional operation modes are foreseen:

- CW operation at 100kHz
- Long Pulse' mode with ≤200kHz in 500ms bursts, i.e. 50% duty cycle

On the same time scale the PETRA IV DLLS will become available.

Intensity will allow to record complete diffraction patterns in ≈10µs

Plans for a possible successor of AGIPD are

- ≥100kHz (CW) imager
- 100 μm × 100 μm Pixels
- Dynamic gain switching
- In-pixel (group) ADC
- (Very) Limited pipeline for burst mode
- High-speed serial link I/O

Going Faster: With Analogue Readout

Going Faster: Limits of Analogue Readout

2nd Order Effects:

- Skin-Effect (att.~ \sqrt{f})
 - can not be compensated -1,00E+00 with pre-emphasis $(\sim 1/f)$ -2,00E+00
 - can be compensated with a digital (FIR) filter
- Reflections due to
 - Connectors
 - Bending of cables
- ⇒ Very delicate above a few 10MHz
- ⇒ the same transmission line would be OK for the resulting digital data

Going Faster:

In-pixel digitisation architectures

Going Faster:

Summary & Outlook

AGIPD 1.1 (SPB/MID)

- System fulfils all requirements, esp. in terms of
 - Noise (<310e / <1.2 keV)</p>
 - Single photon sensitivity
 - Dynamic range (>10⁴γ @ 12.4keV)
 - Speed
- Both systems in user operation
- Issues with low/med gain discrimination
 - Mask fix (AGIPD 1.2) taped out 14. Aug. 2018
 - ≈30% better 'gain separation' in wafer test
 - Module production at IZM & ADVACAM under way

SFX AGIPD 4M and HiBEF 1M systems

- SW/FW development in progress
- Evaluation of advanced cooling concepts
- Both systems will be delivered with Silicon sensors & AGIPD 1.x ASICs

ecAGIPD for HiBEF

- Will replace Silicon sensors with High-Z ones
- Changes
 - Electron collecting preamp
 - Reversed polarity of discriminator
 - New calibration circuit
 - Use of twin wells
 - Reversed gain encoding levels
- AGIPD06
 - 16 x16 ecAGIPD prototype
 - Submitted 13.11.2017
 - Manufacturing @ GF only started end of March (30.03.18)
 - Silicon back since July
 - Working, characterisation ongoing
- Only peripheral routing missing for an 64x64 EcAGIPD

100kHz Imager for CW-XFEL and PETRA IV

- Concept studies
 - Dynamic gain switching
 - In-pixel ADC
 - High-speed serial link I/O
- More specs needed

http://photon-science.desy.de/research/technical_groups/detectors/projects/agipd