

AGIPD at the European XFEL Status and Future Plans

A. Allagholi¹, J. Becker¹, A. Delfs¹, R. Dinapoli², P. Göttlicher¹,
H. Graafsma^{1, 5}, D. Greiffenberg², H. Hirsemann¹, S. Jack¹, A. Klyuev¹,
H. Krüger³, M. Kuhn¹, T. Laurus¹, A. Marras¹, D. Mezza², A. Mozzanica²,
J. Poehlsen¹, I. Sheviakov¹, B. Schmitt², J. Schwandt⁴, X. Shi²,
S. Smoljanin¹, **U. Trunk¹**, J. Zhang², M. Zimmer¹
¹DESY, Photon Science - Detector Group, Hamburg, Germany
²Paul-Scherrer-Institut (PSI), SLS Detector Group, Villigen, Switzerland
³University of Bonn, Bonn, Germany
⁴University of Hamburg, Hamburg, Germany
⁵Mid Sweden University, Sundsvall, Sweden

Outline

The AGIPD System	European XFEL Single molecule imaging Requirements
AGIPD 1.1 Readout ASIC	Architecture Dynamic gain switching Performance
AGIPD Detector systems: SPB & MID	Overview First user experiments Results
AGIPD Detector Systems: SFX & HiBEF	Readout boards Optical communications Cooling and mechanics
ecAGIPD for HiBEF	Electron-collecting AGIPD AGIPD06 demonstrator
Conclusion	Summary Outlook

...she removed a beam attenuator and the diffraction rings of a powder sample, registered by the 1M pixel AGIPD detector at the SPB instrument demonstrated that the most powerful hard X-Ray Free Electron Laser went into user operation.

Ulrich Trunk, FEE Workshop, Jouvence, Canada, 22. May 2018

European XFEL properties

AGIPD Scientific Case: Single Molecule Imaging & SFX

Radiation hard design

Ulrich Trunk, FEE Workshop, Jouvence, Canada, 22. May 2018

Adaptive gain switching

Sensor

Line spectra covering all 3 gains with (1MeV) Protons@LABEC

High gain: 50-80 Photons with single photon sensitivity. Low gain: 5000 photons with linear gain +5000 photons with 1% nonlinearity.

AGIPD Detector noise

AGIPD1.0 - Chip 1 - Noise over Dynamic Range (x12.4 keV) - LASER (IR)

AGIPD 1Mpix Systems: Calibration

Feed calibration frame work with

Pulse capacitor dynamic range scans for all memory cells used

Cu-K_α data at XFEL

Dark data for High and Medium gain level

Calibration framework follows a modular concept and allows removing, adding and exchanging building blocks

- Huge number of fits!
- 65,536 pixels
- 352 memory cells
- 3 Gains + 3 Offsets
- ≈138,000,000 fits / module
- 16 Modules $\rightarrow 2.2 \times 10^9$ constants
- computation time, fit quality, non-constant fit ranges

First User Experiment: XFEL2012 (14th – 19th Sept. 2017)

TA We We Th First round of reflection intensities from XFEL2012 data are win achand thaaccurate enough to produce a structure

In-vacuum z-motion into the gate valve (inner diameter 800mm) Travel range of 400 mm

- 4 x 14 Front-End-Modules
- Two wings
 - 2 x 14 FEMs each
 - Individual in-vacuum x-motion

AGIPD 4M Detector for SFX In-Vacuum Cooling

AGIPD 1M Detector for HiBEF @HED Endstation of European XFEL

The HiBEF (Helmholtz International Beamline for Extreme Fields) experiment @ EuXFEL needs a 1Mpix detector for $E_{ph} \ge 25 \text{keV}$

- The existing AGIPD detector collects positive charges (holes)
 - Easier to realise radiation hard sensors
 - Slower less demanding to handle large charges (circuit wise)
- AGIPD is not suitable for experiments with photons above ~15keV
 - The Silicon sensor gets inefficient ~15keV
- High-Z Semiconductors, esp. GaAs promise efficient sensors for E_{ph}≥25keV
- Composite (III/V) Semiconductors feature relatively short charge carrier lifetimes
- Collection of Electrons (i.e. the fast component) is required

Ulrich Trunk, FEE Workshop, Jouvence, Canada, 22. May 2018

HiBEF: From AGIPD to ecAGIPD

Triple-well structure at negative ($V_{diode} \sim -1V$) voltage containing

Input protection diode

Current source for test stimulus = current mirror driven by existing source

Feedback switches

Modified Preamp

- New baseline at ~400mV
- Discriminator of opposite polarity
- Changed gain encoding

Hi <-> Lo

Swapped output pads Ulrich Trunk, FEE Workshop, Jouvence, Canada, 22. May 2018

ecAGIPD-Preamp

ecAGIPD-Preamp

Ulrich Trunk, FEE Workshop, Jouvence, Canada, 22. May 2018

Beyond AGIPD

European XFEL operation will change in the 2nd half of the 2020s. Tentatively 2 additional operation modes are foreseen:

CW operation at 100kHz

Long Pulse' mode with ≤200kHz in 500ms bursts, i.e. 50% duty cycle On the same time scale the PETRA IV DLLS will become available.

Intensity will allow to record complete diffraction patterns in $\approx 10 \mu s$

Plans for a possible successor of AGIPD are

- ≥100kHz (CW) imager
- 100 µm × 100 µm Pixels
- Dynamic gain switching
- In-pixel (group) ADC
- (Very) Limited pipeline for burst mode

Summary & Outlook

AGIPD 1.1 (SPB/MID)

- System fulfils all requirements, esp. in terms of
 - Noise (<310e / <1.2 keV)
 - Single photon sensitivity
 - Dynamic range (>10⁴ γ @ 12.4keV)
 - Speed
- 1st 1Mpix system (SPB) in user operation
- 2nd 1Mpix system (MID) is ready for delivery
- Issues with low/med gain discrimination
 - Mask fix under investigation

SFX AGIPD 4M and HiBEF 1M systems

- Commissioning of new readout boards currently ongoing
 - No major issues
- Evaluation of advanced cooling concepts
- Both systems will be delivered with Silicon sensors & AGIPD 1.x ASICs

ecAGIPD for HiBEF

- Will replace Silicon sensors with High-Z ones
- Changes
 - Electron collecting preamp
 - Reversed polarity of discriminator
 - New calibration circuit
 - Use of twin wells
 - Reversed gain encoding levels
- AGIPD06
 - 16x16 ecAGIPD prototype
 - Submitted 13.11.2017
 - Manufacturing @ GF only started end of March (30.03.18)
 - -> Silicon expected in June
 - Also includes modifications to investigate low/med gain discrimination issues
 - Missing for an 64x64 EcAGIPD
- Swapping of outputs
- Layout (vDiode, some routing outside the matrix...)

100kHz Imager for CW-XFEL and PETRA IV

- Concept studies
- More specs needed

http://photon-science.desy.de /research/technical_groups/ detectors/projects/agipd