Excercises „Methoden Moderner Röntgenphysik II"

- X-Ray Reflectivity -

In Born-Approximation, the x-ray intensity reflected by a surface is given by

$$
I\left(q_{z}\right) \propto \frac{1}{q_{z}^{4}}\left|\int_{-\infty}^{\infty} \frac{d \rho(z)}{d z} \exp \left(i q_{z} z\right) d z\right|^{2}
$$

with the wave vector transfer q_{z} along z and the electron density profile $\rho(z)$ along z.
For a smooth single surface of a substrate with refractive index $n=1-\delta$ (no absorption) the exact Fresnel reflectivity $I(\alpha)$ is given by

$$
I(\alpha)=\left|\frac{k_{z 1}-k_{z 2}}{k_{z 1}+k_{z 2}}\right|^{2} \quad \text { with } \quad k_{z 1}=\frac{2 \pi}{\lambda} \sin \alpha \quad \text { and } \quad k_{z 2}=\frac{2 \pi}{\lambda} \sqrt{n^{2}-\cos ^{2} \alpha}
$$

and the incident angle α.

1) Show that the Fresnel reflectivity is proportional to the Born approximation for an ideally smooth surface and for $\sin \alpha \gg 2 \delta$.

At a synchrotron radiation source such as PETRA at DESY the emitted x-radiation exhibit a photon energy spectrum $I_{\text {PETRA }}(E)$. At some user-specified photon energy E_{0} with maximum photon flux this function also has maxima at $E_{0} / 3, E_{0} / 5$, and so on. These socalled harmonics have to be suppressed before the experiment. This can be done by x-ray mirrors
2) Design a "harmonic suppressor" for x-ray beams. Draw a principle sketch and explain how it works. Use the fact that matter has a refractive index $n=1-\delta$.
3) Estimate the suppression factor for the $3^{\text {rd }}$ harmonic $E_{0} / 3$ using that $\delta \propto \lambda^{2}$ and that the incident angle is $\alpha \ll 1$. Compare the suppression with the typical flux of 10^{8} photons per second for the $3^{\text {rd }}$ harmonic.
4) Most x-ray mirrors deflect in the vertical. Calculate the minimum length of a mirror for a typical vertical beam size of 1 mm and a typical incident angle of $\alpha=0.15 \mathrm{deg}$.

At PETRA III a typical distance between the harmonic suppression mirror and the sample would be 40 m . The average incident angle should be $\alpha=0.15 \mathrm{deg}$. The length of the equally illuminated mirror should be 382 mm . Let us assume that the mirror is not perfectly flat but has a kink in the middle and is hanging at each end by $1 \mu \mathrm{~m}$:

5) With a perfectly flat mirror the beam shape at the sample position would be rectangular with a height of approx. 1 mm . Estimate the shape of the beam at the sample position using the slightly bend mirror.

