1. Exercise to the lecture „Röntgenphysik - Streuung und Abbildung" SS 2013
 M. Srung \& G. Grübel

These exercises are based on the 2nd lecture (slides 10-21).

1. Refraction:

i) An x-ray beam of 0.1 mm height hits the following objects ($\delta=1 \mathrm{e}-05 ; \beta=0.0$):
a) a triangle of height (perpendicular to beam) 0.1 mm , length (along beam) 0.1 mm
b) a triangle of height 0.1 mm , length 1.0 mm
c) a triangle of height 0.1 mm , length 10.0 mm
d) a triangle of height 0.1 mm , length 100.0 mm

What happens to the beam at a distance of 10 m after the sample?
ii) What is the angle of total reflection for a material with a $\delta=1 \mathrm{e}-05$? You entering the material from a vacuum side ($n=1!$).

2. Fraunhofer pattern:

The scattered intensity is the product of the scattering amplitudes. Calculate the scattered intensity for a) one square slit, b) a round slit and c) an equilateral triangular slit. Describe the resulting intensity distributions (an image would be nice).

3) Coherent properties of PETRA III:

PETRA III is the new $3^{\text {rd }}$ generation synchrotron source at Hamburg. The electron beam can be configured for each individual beamline in a high or low beta configuration. This results in source sizes of a) $14 \times 330 \mu \mathrm{~m}^{2}$ (high beta) and b) $14 \times 84 \mu \mathrm{~m}^{2}$ (low beta).
i) Calculate the transverse coherence length at a distance of 90 m and at x-ray energies of $1,2,4,8,16$ and 32 keV .
ii) What is the longitudinal coherence length after Silicon (111) monochromator with an energy bandwidth of $1 \mathrm{e}-04$ and after a 5 m long undulator with 170 magnet structures with a period of 29 mm (X-ray energy: $8 \mathrm{keV} ; 1^{\text {st }}$ undulator harmonic)?

