Disordered Materials: Glass physics

- > 2.7. Introduction, liquids, glasses
- > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors
- > 9.7. Static structures: X-ray scattering, EXAFS, neutrons, data interpretation
- > 11.7. Dynamic structures and the glass transition

Hermann Franz Methoden moderner Röntgenphysik II July 2013

- > Systems
- > Structure

Dynamics in real disordered solids

• microscopic process: rather harmonic in most glasses

• cage (β)- process: intermediate times

glass transition T_c : α and β process merge

Density correlation functions and MCT

$$\phi_q(t) = \left\langle \rho_q^*(t) \rho_q(0) \right\rangle / \left\langle \left| \rho_q(0) \right|^2 \right\rangle$$

$$\ddot{\phi}_q(t) + \Omega_q^2 \phi_q(t) + \Omega_q^2 \int m_q(t-t') \dot{\phi}_q(t') dt' = 0$$

Equation of motion for density correlators including ,,memory term"

- Ergodicity non-ergodicity transition at T_c
- Power laws for correlation functions near T_c
- Order parameter is the ergodicity parameter f_q

 $F_{q}(t) = f_{q} - h_{q}(t/\tau)^{b} + \dots \approx f_{q} \exp(-t/\tau_{K})^{\beta} \qquad \text{α-relaxation}$ $F_{q}(t) = f_{q} + h_{q}(t_{0}/t)^{a} + \dots \qquad \beta\text{-relaxation (cage process)}$ $f_{q} \approx \sqrt{T_{c} - T} \qquad \text{$Square-root singularity}$

Density correlation functions and MCT

$$f_q \approx \sqrt{T_c - T}$$
 Square-root singularity

 T_c describes a transition temperature which in contrast to T_g does not depend on experimental parameters.
 The glass transition is an ergodic - non ergodic cross over
 In most systems T_c is 20% higher than T_g, i.e. the transition is in the "liquid" region

The glass transition temperature T_g and T_c

Density correlation functions and MCT

Figure 4. Comparison of the MCT solution for $\phi_q(t)$ (solid curve) with the asymptotic β -relaxation approximation (dashed curve) (equations (25) and (26)). The dotted curves show the two power laws. (From reference [4].)

Quasielastic nuclear resonant forward scattering

Butyl phthalate / ferrocene

Exact treatment of QNFS: I. Sergueev, HF,.. PRB 2003

Non ergodicity parameter

Square-root behaviour as predicted by mode-coupling theory Stretching exponent $\beta = 0.48$, independent of T

Neutron scattering results

Masterplot

J. Wuttke et al, Physica B (1997)

Structure determination of amorphous materials

X-ray diffraction using high energy photons

1st coordination shell

2nd coordination shell

continuum

- + high penetration depths (mm-cm)
- + relatively fast, suitable for in-situ studies

g(R)

- less sensitive to elements
- ASF depend on Q

Neutron diffraction

- + sensitive to different isotopes
- + ASF do not depend on Q
- + probes magnetic state of matter
- large sample volumes
- relatively slow, not suitable for in-situ studies

Extended X-ray Absorption Spectroscopy

- + highly sensitive to elements
- + reveals local atomic configuration
- + relatively fast, suitable for in-situ studies
- restricted sample size, geometry
- rather difficult to quantitatively analyze data on amorphous samples

However, none of these techniques gives a complete 3D image of amorphous structure \otimes

In-situ tensile experiments using high-energy XRD

BW5 is dedicated to X-ray scattering experiments using high-energy photons (**60 - 150 keV**).

The **large penetration depth** at these energies of typically **sereral mm to cm** allows the investigation of bulk materials and complex sample environments.

The experimental station is equipped with a triple axis diffractometer and an **image plate** camera.

Parameters:

- wavelength $\lambda = 0.12398$ Å (100 keV)
- crossection of collimated beam 1mm²
- exposure time 10 s
- XRD in transmission mode
- 2D ma345 image plate detector used in symetric mode

Absorption scan on
$$[(Fe_{1-x}Co_x)_{71,2}B_{24}Y_{4,8}]_{96}Nb_4$$
, BMG \emptyset 2mm photon energy E=100 keV, ($\lambda = 0.0123984$ nm)

 $I = I_0 e^{-\mu d}$

I_o represents incident intensity
I is the transmitted intensity
μ is the absorption coefficient
d is the sample thickness

M. Stoica et al, Journal of Applied Physics 109 (2011) 054901

Calculation of structure factor.

The measured X-ray diffraction intensity may be expressed [10] by

$$I^{mea}(Q) = PA[N(I_{eu}^{coh} + I_{eu}^{inc} + I_{eu}^{mul})]$$
(5.1)

where P is the polarization factor, A the absorption factor, N normalization constant, and $I_{eu}^{coh}, I_{eu}^{inc}, I_{eu}^{mul}$ are the coherent, incoherent(Compton), and multiple scattering intensities, respectively, in electron units. We can define the structure function(S(Q)) in the following form.

$$S(Q) = [I_{eu}^{coh} - (\langle f^2 \rangle - \langle f \rangle^2)] / \langle f \rangle^2$$
(5.2)

where $\langle f \rangle$ is the sample average scattering factor. Therefore to get a structure function, we have to do the following corrections [11] step by step on raw data.

[10] Y. Waseda. The structure of non-crystalline materials. McGraw-Hill, New York, 1980.

[11] C. N. J. Wagner, J. Non-Cryst. Solid 31, 1, 1978

Compton scattering.

(b) The incoherently diffracted intensity per atom, $I_a^{\text{incoh}}(Q)$

$$I_{a}^{\text{incoh}}(Q) = \left(\frac{\lambda}{\lambda'}\right)^{2} \sum_{j=1}^{n} c_{j} Z_{j} \frac{(b_{j}Q)^{a_{j}}}{1 + (b_{j}Q)^{a_{j}}} \qquad (A2)$$

with *n* the number of atomic species, Z_j the atomic number of species *j*, and a_j and b_j semi-empirical expressions given by

 $a_{j} = 2 \cdot 6917 \ Z_{j}^{-1} + 1 \cdot 2450$ $b_{j} = 1 \cdot 1870 \ Z_{j}^{-1} + 0 \cdot 1075 + 0 \cdot 00436 \ Z_{j}$ $- (0 \cdot 01543 \ Z_{j})^{2} + (0 \cdot 01422 \ Z_{j})^{3}.$ (A3)
(A3)

J. Appl. Cryst. (1984). 17, 61-76

Laue diffuse scattering.

J. Appl. Cryst. (1984). 17, 61-76

Structure factor.

- Measured intensities corrected for absorption, polarization, fluorescence, multiple scattering, Compton scattering
- Proper normalization based on weighted atomic scattering factors (Faber-Zimman formalism)

$$S(q) = 1 + \frac{I^{coh}(q) - \langle f^2 \rangle}{\langle f \rangle^2}$$
(1)

where $\langle f \rangle = \sum_{i=1}^{n} c_i f_i(q)$ and $\langle f^2 \rangle = \sum_{i=1}^{n} c_i f_i^2(q)$, in which c_i corresponds to the atomic fraction of the component *i* having X-ray atomic scattering factor $f_i(q)$. The reduced pair distribution function, G(r), can be obtained through a sine Fourier transformation

$$G(r) = \frac{2}{\pi} \int_{0}^{\infty} q[S(q) - 1] \sin(qr) \, \mathrm{d}q.$$
 (2)

Pair Distribution Function.

g(r) describes how the density of surrounding atoms varies as a function of the distance from a distinguished atom.

Coordination number.

Resolution in real space.

 Collecting diffracted photons up to high q values significantly improves resolutions of pair distribution function

Hermann Franz | Master course mod. X-ray physics | July 20113 | Page 50

Summary.

1) Measure diffracted photons up to high q-range

$$q_{\max} = \frac{4\pi}{\lambda} \sin\left[\frac{1}{2} \arctan\left(\frac{R}{SD}\right)\right]$$

2) Perform corrections and calculate structure factor S(q)

$$S(q) = 1 + \frac{I_{e,u}^{coh} - \langle f^2 \rangle}{\langle f \rangle^2} \qquad \qquad \langle f^2 \rangle = \left[\sum_{i=1}^n c_i f_i^2(q)\right] \qquad \langle f \rangle^2 = \left[\sum_{i=1}^n c_i f_i(q)\right]^2$$

3) Fourier transformation of S(q) one obtains Pair Distribution Function G(r)

 $G(r) = 4\pi r [\rho(r) - \rho_0] = \frac{2}{\pi} \int_0^{\infty} q(S(q) - 1) \sin(qr) dq$

4) Determine mean atomic density from G(r) on low r-range

 $G(r) = -4\pi r \rho_0$

4) Calculate Coordination Number (CN) from Radial Distribution Function RDF(r)

 $CN = \int_{r_1}^{r_2} RDF(r)dr = \int_{r_1}^{r_2} \left[4\pi\rho_0 r^2 + rG(r) \right] dr$

In-situ tensile experiments

Courtesy J. Bednarcik

Determination of deformation state by XRD

The symmetric circular diffraction pattern is characterized with respect to the polar coordinates (*s*, η). By dividing the η -range of 0 to 2π into 36 segments, one obtains symmetrized intensity distributions

$$I'_{i}(Q,\eta_{i}) = \int_{\eta_{i}-\pi/36}^{\eta_{i}+\pi/36} [I(Q,\eta) + I(Q,\eta+\pi)] d\eta$$

with i = 1...18, where the wave-vector transfer Q = Q(s) is defined by

$$Q(s) = \frac{4\pi}{\lambda} \sin\left(\frac{1}{2} \arctan\left(\frac{s}{D}\right)\right)$$

in which λ denotes the wavelength, *D* refers to the sample-to-detector distance and *s* represents the distance from the origin of the polar coordinate system.

The relative change of the position of the principal peak upon applying an external stress defines the strain

$$\varepsilon_i(\eta_i, \sigma) = \frac{q(\eta_i, 0) - q(\eta_i, \sigma)}{q(\eta_i, \sigma)}$$

H. F. Poulsen et al., Nat. Mater. 4 33-35 (2005)

Determination of tensor components

Hermann Franz | Master course mod. X-ray physics | July 20113 | Page 54

Analysis in reciprocal space

Stress-strain curves

Poly-crystalline metal

La based metallic glass Only elastic strain !!!

Tensile deformation at elevated temperatures.

Relaxation phenomena and glass transition

Figure 1: Detailed view showing infrared lamp furnace. Black tube sitting between two lamps supports capillary with the sample and serves as a heat condenser.

Relaxation phenomena and glass transition

Structure by X-rays - temperature dependence II

N. Mattern et al APL 2003

Below T_g: harmonic change, described by Debye behavior At T_g: Transition to lower Debye-temperature + structural changes

Structure vs. macroscopic properties

