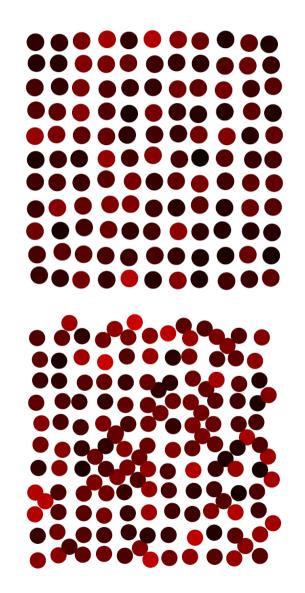
Disordered Materials: Glass physics

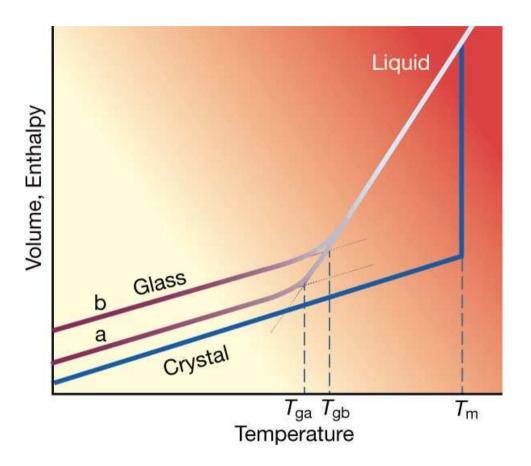
- > 2.7. Introduction, liquids, glasses
- > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors
- > 9.7. Static structures: X-ray scattering, EXAFS, neutrons, data interpretation
- > 11.7. Dynamic structures and the glass transition

Hermann Franz Methoden moderner Röntgenphysik II July 2013


- > Systems
- > Structure
- > Glass transition

- > Metallic glasses
- > Mechanical properties
- > Applications

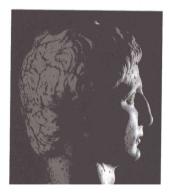
Glasses are materials with "amorphous structure showing a gradual transition from the liquid to the solid without well defined melting point."


No or only minor changes in the static structure at the transition

Introduction

- Physical properties change gradually on lowering the temperature
- Cross-over depends on cooling/heating rate
- i.e. properties depend on thermal history
- Glasses are in a frozen in metastable state
- susceptible to crystallization

History


Art of glass making known since

ca 3000 b.c.

Earliest records in Egypt and Mesopotamia, later many records in Rome

Sacophagus of Tut Ench Amun

Glas 2): Becher aus dem Grab Thutmosis' III.; Höhe 8,5 cm, um 1450 v. Chr. (München, Staatliche Sammlung Ägyptischer Kunst)

Examples for glasses in everyday life

Traditional glasses

 SiO_2 , B_2O_3 , P_2O_5 based

Window glass

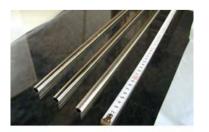
SiO₂ with sodium or potassium minerals (soda, potash)

Glasses for art work

doped with variety

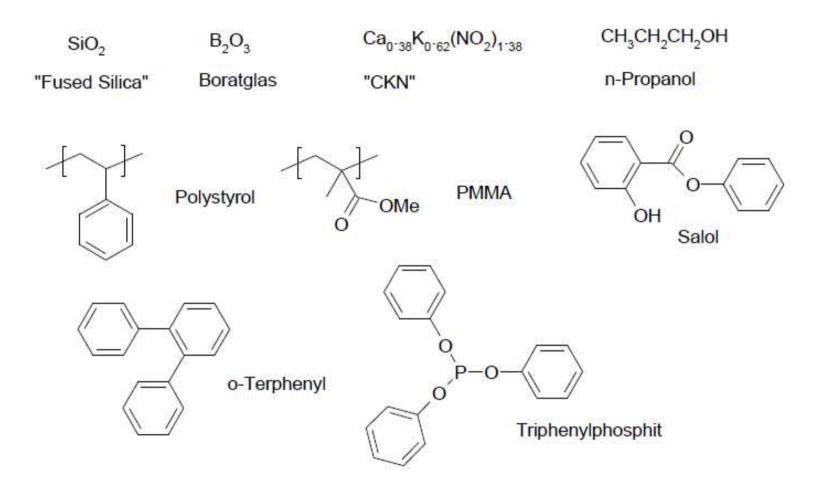
of elements

Industrial glasses

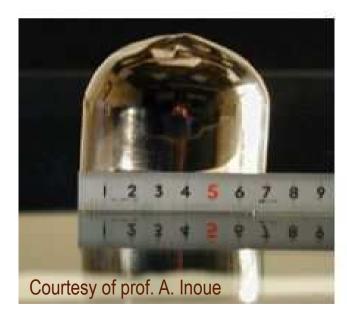

Polymers

Plastic materials: PE, PMMA, PS.....

SMO (small organic molecules)


Glycerol, OTP, salol, squalane,

Metallic glasses


Examples for typical glass formers

Bulk Metallic Glasses

Systems

- > Historically first alloy AuSi (1960) cooling with 10⁶ K/s
- > 1969 PdCuSi only 10³ K/s needed
- First commercial amorphous alloy, Vitreloy 1 (41.2% Zr, 13.8% Ti, 12.5% Cu, 10% Ni, 22.5% Be)
- Families of alloys
 - Pd based: PdCuNiP
 - Zr based: ZrNi, ZrTiCuNiBe (v4), ZrAlNiCuAg, ZrPd, ZrAlCu, ZrAlCuNiFe
 - La based
 - Fe based: FePCAIBGa
 - Cu based: CuZr, CuTiZr
 - Al based: AlLaNi
 - Ni based: NiZr, NiNbY
 - and many more

> Comparatively simple structure -> ideal model systems

Systems

1788

Q.K. Jiang et al. | Acta Materialia 56 (2008) 1785-1796

Table 1

The critical sizes (d_c) and thermal parameters for $Zr_{100-x-y}(Cu_zAg_{1-z})_yAl_x$ (x = 7-9 at.%, y = 42-50 at.% and z = 0.75-0.875) alloys, together with other BMGs reported in Refs. [20,27,28] for comparison

Alloys	Critical size	Amorphous ingots (25 g)	T_{g}	T_x	$T_{ m m}$	T_1	ΔT_x	$T_{\rm rg}$	γ
Zr46Cu46Al8	5 mm	No	715	771	978	1163	56	0.615	0.411
Zr47(Cu4/5Ag1/5)46Al7	<20 mm	No	704	783	1055	1242	79	0.567	0.402
Zr47(Cu4 5/5.5Ag1/5.5)46Al7	<20 mm	Partial	702	782	1056	1123	80	0.625	0.428
Zr47(Cu5,6Ag1/6)46Al7	<20 mm	Partial	703	781	1060	1125	78	0.625	0.427
Zr47(Cu6/7Ag1/7)46Al7	20 mm	Partial	709	774	1057	1118	65	0.634	0.424
Zr45(Cu4)5Ag1/5)48Al7	20 mm	Partial	710	783	1062	1208	73	0.588	0.408
Zr45(Cu4 5/5.5Ag1/5.5)48Al7	>20 mm	Yes	711	785	1063	1154	74	0.616	0.421
Zr45(Cu5/6Ag1/6)48Al7	>20 mm	Yes	713	786	1061	1159	73	0.615	0.420
Zr43(Cu5/6Ag1/6)50Al7	20 mm	No	738	770	1075	1127	32	0.65	0.413
Zr50(Cu4/5Ag1/5)42Al8	20 mm	Partial	703	774	1089	1155	71	0.609	0.417
Zr50(Cu5/6Ag1/6)42Al8	<20 mm	Partial	701	764	1095	1138	63	0.616	0.415
Zr48(Cu3/4Ag1/4)44Al8	20 mm	Partial	706	770	1092	1218	64	0.580	0.400
Zr48(Cu4/5Ag1/5)44Al8	>20 mm	Yes	707	762	1090	1132	55	0.625	0.414
Zr48(Cu4.5/5.5Ag1/5.5)44Al8	>20 mm	Yes	706	777	1089	1129	71	0.625	0.423
Zr48(Cu5/6Ag1/6)44Al8	>20 mm	Yes	705	778	1090	1122	73	0.628	0.426
Zr48(Cu6/7Ag1/7)44Al8	>20 mm	Yes	706	778	1089	1127	72	0.626	0.424
Zr48(Cu7/8Ag1/8)44Al8	20 mm	Partial	707	779	1095	1127	72	0.627	0.425
Zr46(Cu4/5Ag1/5)46Al8	>20 mm	Yes	710	776	1091	1228	66	0.578	0.400
Zr46(Cu4 5/5.5Ag1/5.5)46Al8	>20 mm	Yes	703	775	1088	1126	72	0.624	0.424
Zr46(Cu4.5/5.5Ag1/5.5)46Al8 ingots	>20 mm	Yes	704	776	1089	1130	72	0.623	0.423
Zr46(Cu5/6Ag1/6)46Al8	>20 mm	Partial	710	778	1088	1120	68	0.634	0.425
Zr53(Cu5/6Ag1/6)38Al9	20 mm	Partial	711	767	1089	1129	56	0.63	0.417
Zr51 (Cu4 5/5.5 Ag1/5.5)40 Al9	20 mm	Partial	703	758	1092	1144	55	0.615	0.410
Zr49(Cu5/6Ag1/6)42Al9	20 mm	Partial	708	767	1092	1242	59	0.57	0.393
Cu43Zr43Al7Ag7 [27]	8 mm	_	722	794	1125	-	72	-	-
Zr41.2Ti13.8Cu12.5Ni10Be22.5 [28]	25 mm	-	623	672	932	996	49	0.67	0.415
Pd.40Cu30Ni10P20 [28]	72 mm	-	575	670	804	840	95	0.72	0.473
La62Al14Cu11.3Ag2.7NisCo5 [20]	>20 mm	-	422	482	642	727	60	0.580	0.419
La65Al14Cu9.2Ag1 8Ni5Co5 [20]	35 mm	-	419	459	641	687	40	0.610	0.415

"Yes", "partial" and "no" are roughly defined by eyes for ingots having volume fractions of larger than about 80%, 30-80% and less than about 30% for the amorphous component, respectively.

Couple of empirical rules in literature

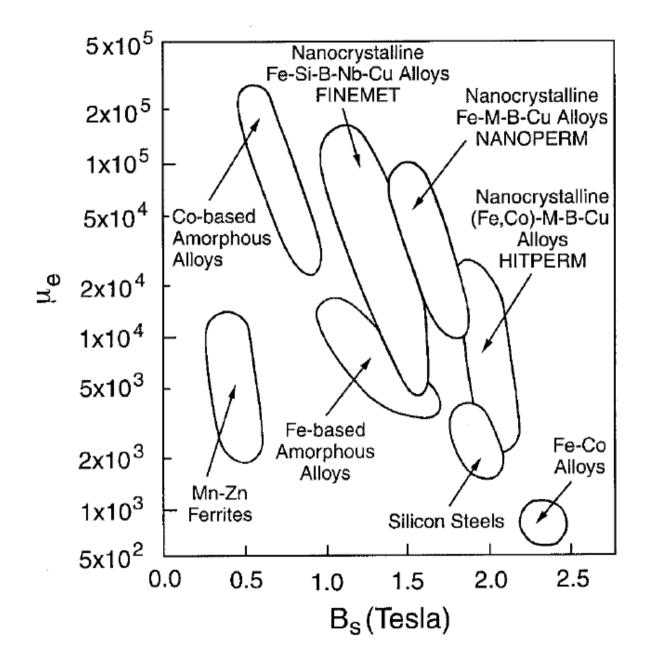
However up to now still empirical (trail and error) development

- Three or more alloy components
- Very different atomic radii
- Negative heat of mixing
- Low eutectic
- Competing crystalline phases

Transformers

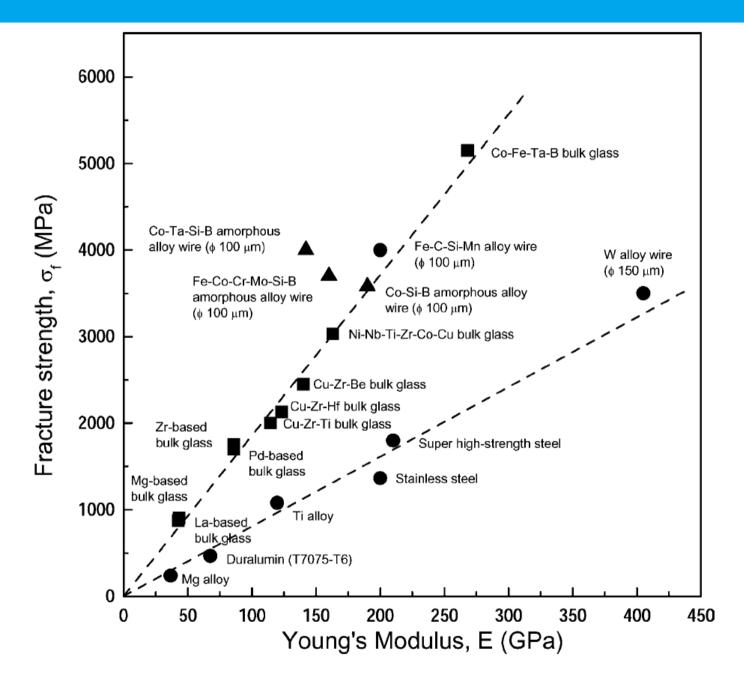
low thermal losses

Light weight compounds in space crafts

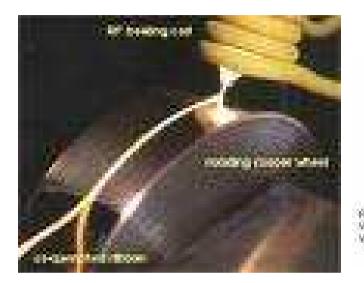

high specific strength

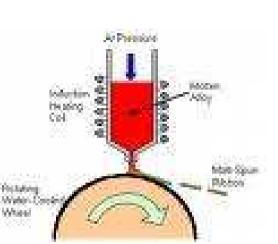
Surface coating

very hard thin films

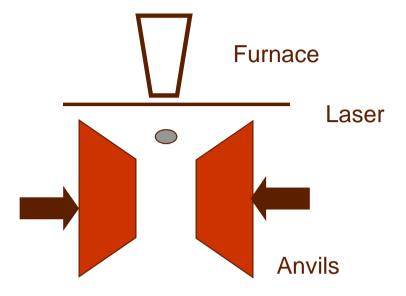


Magnetic properties




High strength

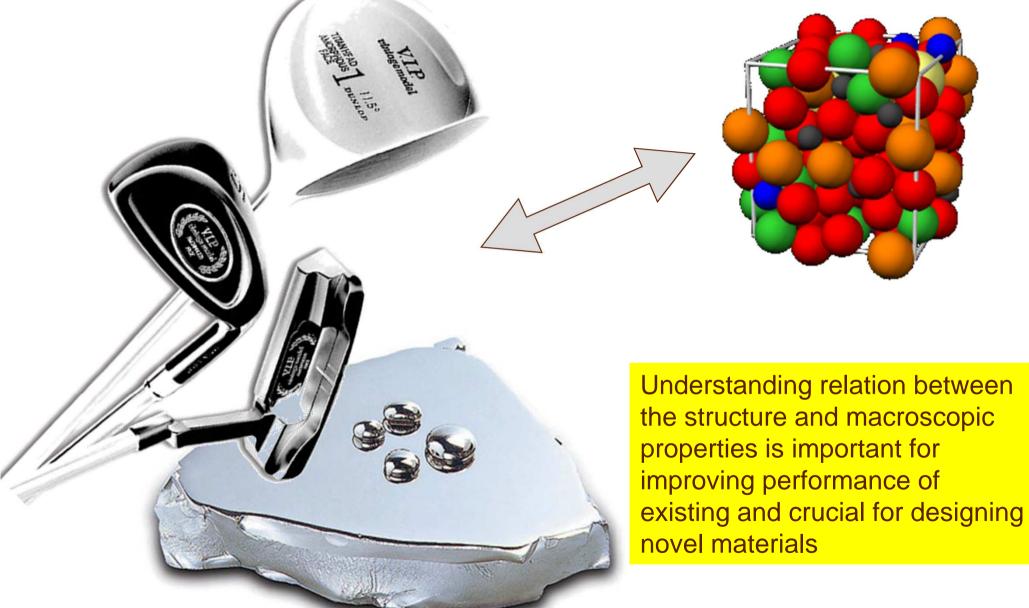
Sample preparation - melt spinning



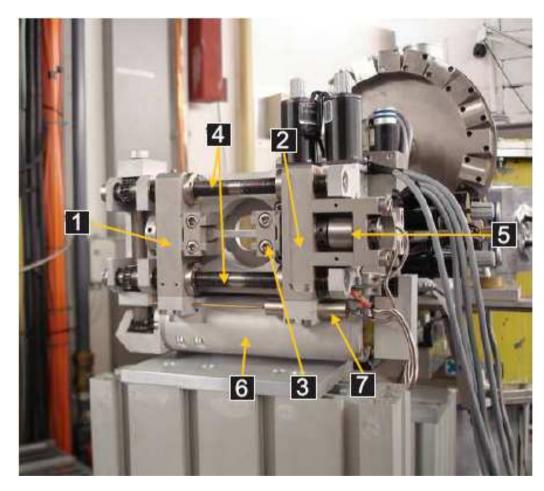
Rather wide spread Cooling rate up to 10⁵ K/s Production of large quantities However only thin films (couple of 10 μm)

Sample preparation - splat cooling

Rather wide spread Cooling rate up to 10⁶ K/s Production of small quantities Only thin disks (couple of 10 μm)


Sample preparation - mold casting

Cooling rate up to 100 K/s Production of "large", bulk samples Flexible shapes


Structure vs. macroscopic properties

In-situ tensile experiments

Tensile/compression module

 $Zr_{64.13}Cu_{15.75}Ni_{10.12}AI_{10}$

- [1] rear yoke, [2] front yoke, [3] clamping,
- [4] leading screws, [5] -load cell, [6] motor,
- [7] displacement gauge

Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Science **315**, 1385 2007.

Structure by X-rays

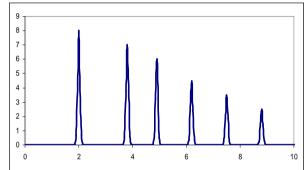
Reminder:

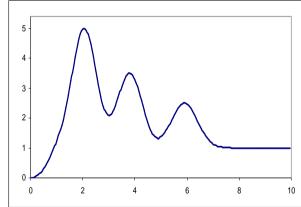
Scattering amplitude from a crystal

$$\mathsf{F^{crystal}}\left(\mathsf{Q}\right) = \sum\nolimits_{rj} \mathsf{F}_{j} \overset{\mathsf{mol}}{} (\mathsf{Q}) \exp(\mathsf{i} \mathbf{Q} \mathbf{r}_{j}) \bullet \sum\nolimits_{\mathsf{Rn}} \exp\left(\mathsf{i} \mathbf{Q} \mathbf{R}_{\mathsf{n}}\right)$$

unit cell structure factor lattice sum

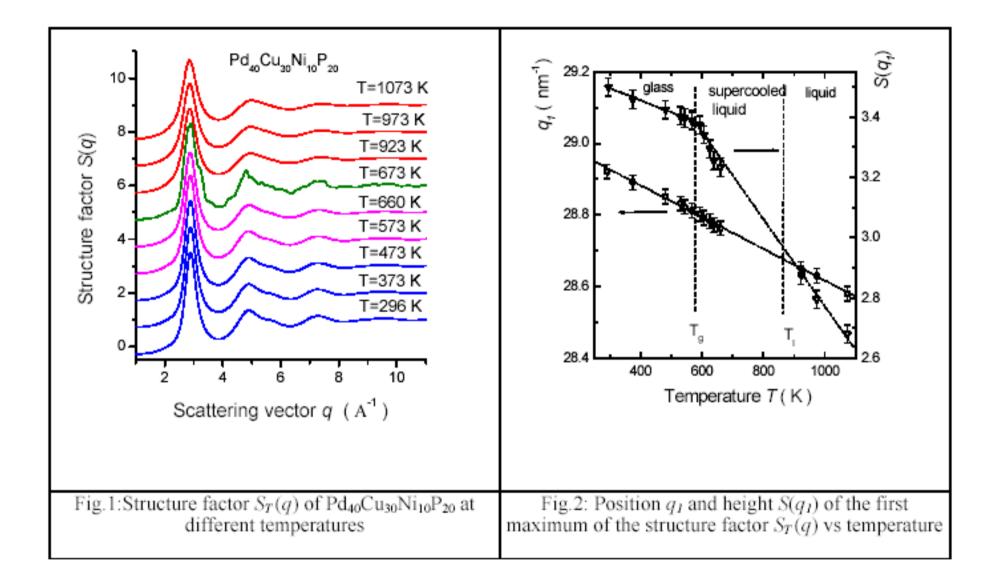
leading to reciprocal lattice

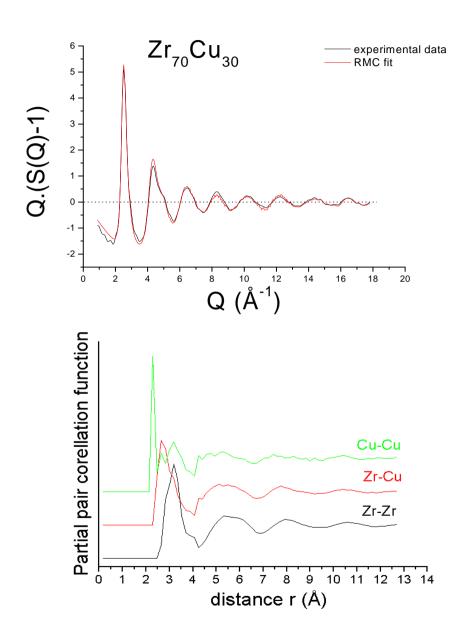

 $\mathbf{G} \bullet \mathbf{R}_{n} = 2\pi \left(hn_{1} + kn_{2} + ln_{3} \right)$

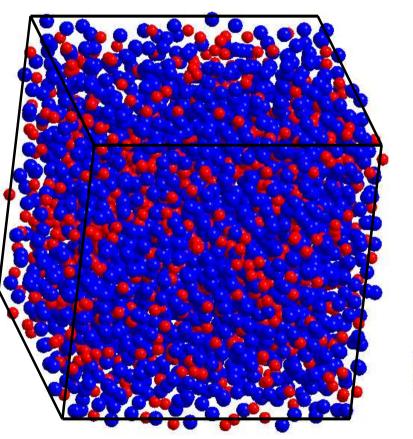

As there is no lattice in amorphous structures we have to treat the whole sample like a molecule

 $F^{mol}(Q) = \sum_{rj} f_j(Q) \exp(iQr_j)$

With the sum running over all atoms in the illuminated volume





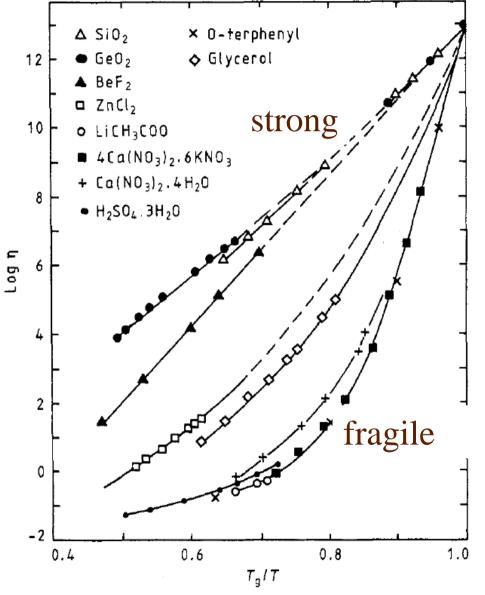


Structure by X-rays - temperature dependence

The glass transition temperature T_q

What is glass (solid) ?

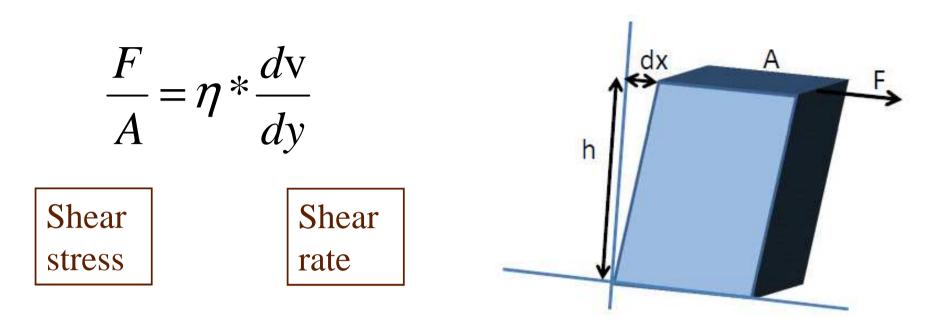
What is liquid ?


There are also complex fluids

- Emulsions
- Colloids
- Gels
- Ketchup, honey, starch,

The glass transition temperature T_a

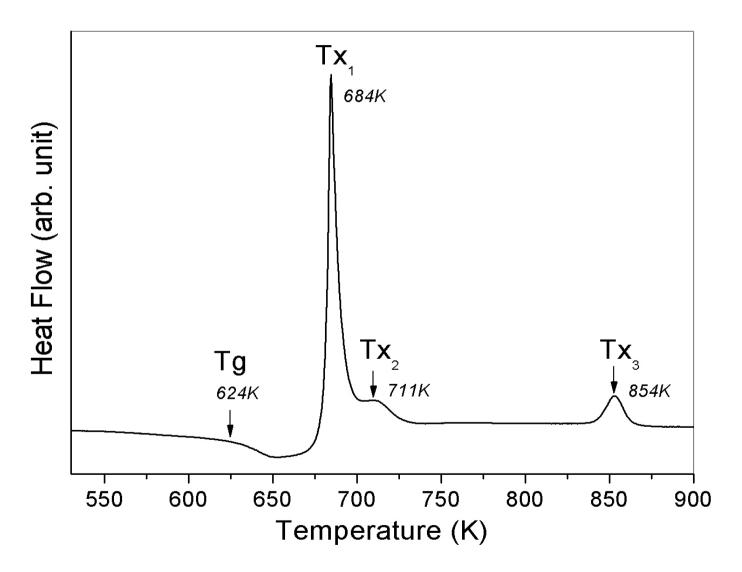
$$\eta = \exp\left(-\frac{E_0}{k(T-T_0)}\right)$$


VFT law transition temperature T_0

Very strong variation of η / τ with temperature

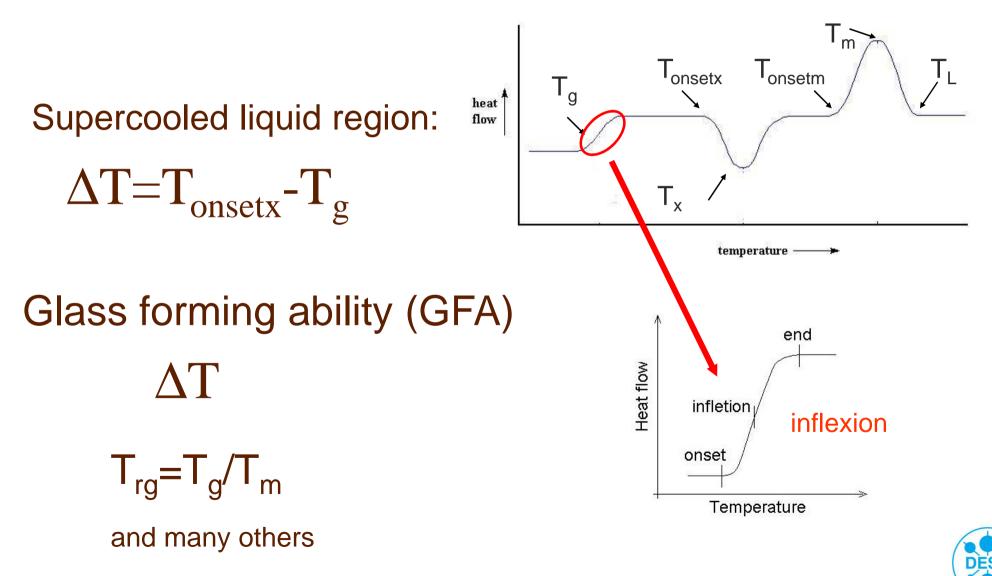
T_g determined by state of the experimental technique

Viscosity and T_g

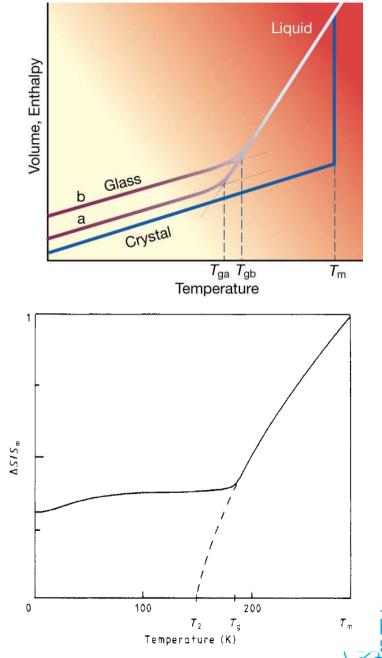


$$\eta \cong G^* t_r$$

Viscosity and share modulus are connected by a characteristic relaxation time



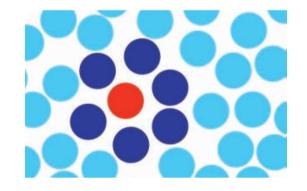
Differential Scanning Calorimetry (DSC)



Differential Scanning Calorimetry

Kautzmann paradoxon

Glass transition at T_K when entropy of the amorphous is lower than in the corresponding crystal



All real systems fall out of equilibrium before

Hermann Franz | Master course mod. X-ray physics | July 20113 | Page 28

Dynamics in real disordered solids

• microscopic process: rather harmonic in most glasses

• cage (β)- process: intermediate times

glass transition T_c : α and β process merge

