Rumpfniveauspektroskopie an Clustern

- Ein wichtiger Aspekt im Bereich der Clusterphysik ist die Inbetriebnahme des freie Elektronen Lasers (FEL) FLASH bei DESY im Jahr 2006
- Damit ist direkte Rumpfniveauphotoelektronenspektroskopie an massenselektierten Clustern möglich geworden
- Aber warum ist das eigentlich so interessant ?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Photoelektronenspektren von (großen) Edelgasclustern

Clusterphysik

590

E

<ロ > < 回 > < 回 > < 回 > < 回 > <

Verhalten der Rumpfniveaus in Clustern

Rumpfniveauspektroskopie von Clustern

- Mit Hilfe der Rumpfniveauspektroskopie können die unterschiedlichen "Sites" eines Clusters unterschieden werden Oberfläche – Bulk – Interface …
- Strahlung im weichen Röntgenbereich mit einer Photonenenergie von mindestens einigen 10 eV erforderlich
- Direkte Messungen waren bis vor kurzem nur bei nicht massenselektierten Clustern möglich
- Warum ?

Cluster Rumpf-PES Zählrate

 Zählrate, die man an massenselektierten Clustern in einem Photoemissionssexperiment erwarten kann

Cluster		Photonen	
Strom I _{CI}	0.1 nA	Photonen / s N _p	10 ¹²
kin. Energie <i>E_{kin}</i>	100 eV		
Cross section/Atom σ_A	5.0 Mbarn	Wechselwirkungzone	
Atommasse <i>M_A</i> (Ge)	73 amu	Fläche A	1 mm ²
Clustergröße N	10	Länge /	1 mm
		Druck pg	10 ⁻¹⁰ mbar
		Restgas σ_g	5.0 Mbarn

<ロト < 団ト < 団ト < 団ト = 三日

Zählrate

Cluster Rumpf-PES Zählrate

Restgasdichte
$$n_g = \frac{N_A}{22.4 \cdot 10^6} \cdot \frac{p[mbar]}{1000}$$
2689 mm^{-3} Cluster Geschwindigkeit $v_{Cl} = \sqrt{\frac{2 \cdot E_{kin} \cdot e}{N \cdot M_A \cdot m_p}}$ 5123 m/s

 $n_{Cl} = \frac{I_{Cl}}{A \cdot e \cdot v_{Cl}}$ Clusterdichte

 $121.8 \ mm^{-3}$

<ロ > < 回 > < 回 > < 回 > < 回 > <

Erzeugte Clusterionen

$$\mathsf{N}_{CI} = \mathsf{n}_{CI} \cdot \sigma_{CI} \cdot \mathsf{N}_{p} \cdot I \cdot \mathsf{N}$$

Erzeugte Restgasionen

$$\mathsf{N}_{g} = \mathit{n}_{g} \cdot \sigma_{g} \cdot \mathit{N}_{p} \cdot \mathit{I}$$

Clusterzählrate

$$N_{Cl} \cdot P$$

Restgaszählrate

$$N_g \cdot P$$

Clusterphysik

SQ (A

臣

oie	Zählrate	

	Synchrotron	FEL
N _P	$10^{12}s^{-1}$	10 ¹³ / Puls
Р	-	bis zu 1000 <i>s</i> ⁻¹
N _{C/} 1/s	0.6	6000
N _{<i>g</i>} 1/s	1-100	13000

Ein normales Synchrotron ist eine guasi CW Quelle

- Es werden immer Elektronen gemessen, was die Restgaszählrate entsprecht erhöht
- nur ein Teil der Photonen genutzt werden kann
- Freie Elektronen Laser (FEL)
 - Die Zahl der Photonen ist um Größenordnungen höher als bei einem Synchrotron
 - Der FEL ist gepulst, so daß nur in einem kurzen Zeitpunkt Elektronen nachgewiesen werden müssen. Dadurch kann der Anteil des Restgases, der immer da ist unterdrückt werden

FLASH – Cluster

Clusterexperiment für Rumpfniveauspektroskopie mit FLASH

- Laserverdampfungsquelle
- Massenselektion (Dipolmagnet oder TOF)
- UHV-Analysekammer mit $p < 1 \cdot 10^{-10}$ mbar
- 7 Gruppen (Uni Rostock, Uni Hamburg, TU Berlin, FU Berlin, BESSY, Uni Konstanz, Uni Frankfurt)
- Erste Experimente
 - Photoelektronenspektroskopie an Blei-Clustern
 - Au Cluster

< ロ > < 回 > < 国 > < 国 > < 国 > 、

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Synchronisation FLASH – Cluster

Time-of-flight mass spectrum

- FLASH: "Ungewöhnliche" Bunchstruktur
- Gleichzeitige" Messung unterschiedlicher Massen

Clusterphysik

SQA

臣

FLASH Cluster – Die ersten Ergebnisse

FLASH Cluster – Der nächste Versuch

• Es geht auch besser

Clusterphysik

Probleme bei der Core-Level Photoemission

- Es gibt mehr Relaxationskanäle als bei der Valenzspektroskopie
- Auger Zerfall des Rumpflochs führt zu weiteren Linien
- Inelastische Streu-Prozesse erzeugen ein Untergrundsignal
 - \Rightarrow Streuung der Photoelektronen
 - \Rightarrow Anregung von Vibrationen im Cluster
 - \Rightarrow Aufheizen des Clusters

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□ → ▲ □ → ▲ □ → □

FLASH Cluster – Ergebnisse

- Metall Nicht-Metall Übergang im Bereich von N=19 ?
- Nicht sichtbar in der Elektronenaffinität

SQA

毫

<ロト < 団ト < 団ト < 団ト

Photoemission bei FLASH

Metall – Isolator Übergang ?

• DFT Rechnungen

Wang et al. Phys.Rev.A **71**, 033201 (2005)

 Struktureller Übergang von einer prolaten, geschichteten Struktur in eine kompakte (fcc) Struktur f
ür N=14-22

Dynamik

- In den letzten Jahren hat sich die Dynamik von Molekülen und Clustern als ein sehr interessantes Gebiet entwickelt
- Was ist darunter zu verstehen und wie wird es untersucht ?
 - Pump-Probe Spektroskopie mit fs Lasersystemen
 - Anregung eines Moleküls oder Clusters mit einem ersten Laserpuls und
 - Abfragen des Zustandes mit der Verzögerung ∆t mittels eines zweiten Laserpulses
- Entsprechende Experimente sind auch bei FLASH geplant

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Dynamik

Was ist damit nun möglich ?

• Elektronendynamik

Wie ändert sich zeitabhängig die elektronische Struktur der Cluster nach einer Anregung

• Kerndynamik

Beobachtung der Bewegung der Atome des Clusters Wie desorbiert/adsorbiert ein Molekül, Wie läuft eine chemische Reaktion ab

 \rightarrow Katalyse Beispiel CO + Au₈

Gewünscht wären zeitaufgelöste Experimente sowohl zur elektronischen (PES) als auch zur geometrischen (Beugung→TIED) Struktur.

Bis jetzt gibt es nur Experimente mittels Elektronenspektroskopie.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □

Dynamik von Cluster

Dynamik

Dynamik von Cluster Elektronendynamik

Elektronendynamik von Clustern

- Durch das Pumpen mit einem Laser werden zuvor unbesetzte Zustände oberhalb der Fermi-Energie besetzt
- Diese Zustände zerfallen dann auf einer ps Zeitskala

Zeitaufgelöste Desorption

- Zeitaufgelöste CO Photodesorption von kleinen Pt_n Clustern
- Zeitliche Änderung der elektronischen Struktur während einer
- Elektronenspektren zeigen eine sequentielle Energiedissipation durch Prozesse wie
 - Elektronenstreuung
 - Elektronische-Vibronische Relaxation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ →

 Für Pt₂(CO)⁻₅ wird eine Desorptionszeit von 3 ps gefunden

Für $Au_2(CO)_5^-$ liegt sie bei nur 500 fs

Lüttgens et al. Phys.Rev.Lett. 88, 076102 (2002)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Ausblick

Ausblick

Was gibt es weiterhin für Arbeiten an Clustern ?

- Molekulare Cluster (H₂O)_n, H⁺(H₂O)_n, (NaCl)_n, Na⁺(H₂O)_n, ... Modellsysteme für Chemie in Lösungen
- Infraspektroskopie von Clustern

Mittels IR-Spektroskopie können die Vibrationsmoden von Clustern gemessen werden, aus denen dann Aussagen über die Geometrie der Cluster gewonnen werden können

• Cluster in starken EM Feldern

Cluster dienen hier als Modellsysteme für Plasmen Coulomb-Explosion

•

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- An kleinen Clustern adsorbierte Moleküle
 - Dynamik: Wie laufen chemische Reaktionen ab ?
 - Molekülentstehung im Weltall
- Zusammenhang zwischen der geometrischen und elektronischen Struktur
 - Phasenübergänge
- Elektronenkorrelationen in kleinen Systemen
 - Ab welcher Clustergröße können die Festkörpereffekte (Supraleitung, Kondo-Effekt, ...) beobachtet werden
 - Metall Isolator Übergänge
- Cluster auf Oberflächen:
 - Wie ändert die Oberfläche die Eigenschaften der Cluster ?
 - Wie sehen die Cluster auf Oberflächen aus
- Magnetismus von Clustern
 - Legierungen, Orbitale und Spin-Momente, Nichtkollineare Strukturen

500

Cluster und Nanosysteme sind *"anders"*. Jedes System muß einzeln betrachtet werden

Interesse ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで