Eine Einleitung

Röntgenphysik

590

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

THE ELECTROMAGNETIC SPECTRUM

Röntgenphysik

Warum Röntgenphysik ?

SQA

臣

<ロト < 団ト < 団ト < 団ト

Historisches

• Entdeckung der X-Strahlen durch Konrad Röntgen

Röntgenphysik

Funktion einer Röntgenquelle

- Bremsstrahlung: Strahlung beschleunigter, geladener Teilchen
- Charakteristische Röntgenstrahlung: Linienspektrum durch atomare Übergänge Strahlung ist elementspezifisch !

SQ

E.

▲ 글 ▶

-∢ ∃ ▶

Historisch: Synchrotronstrahlung

- Entdeckung der Synchrotronstrahlung an sogenannten Synchrotron's
- Strahlung eines hochrelativistischen Teilchens
- Erster experimenteller Nachweis 1947 an dem 70-MeV Synchrotron von General Electric
- Ärgernis für die Teilchenphysiker, da die abgestrahlte Energie nicht mehr zur Beschleunigung der Teilchen zur Verfügung steht
- aber: exzellente Quelle für Röntgenstrahlung
- Strahlung ist um ein vielfaches intensiver und brillianter als die "klassischer" Quellen
- Weitere Entwicklung: Röntgenlaser, Freie Elektronen Laser

SQ C

- 32

Moderne Röntgenquellen

HochleistungsRöntgenröhren

- Einfach zu handhaben
- Einsetzbar in fast jedem Labor
- Tpyisch nur zwei Anregungsenergien: Mg $K\alpha$ (1.2 keV) und Al $K\alpha$ (1.4 keV)
- Nicht durchstimmbar
- geringe Leistung
- schlechte Auflösung; △E 1-2 eV (natürliche Linienbreite der atomaren Übergänge)

SQ C

32

Moderne Röntgenquellen

Synchrotronstrahlung

- Photonenenergie *frei* wählbar zwischen dem Infraroten (THz Strahlung) und harter Röntgenstrahlung (>100 keV)
- Sehr hohe Photonenzahlen
- Polarisation der Strahlung frei wählbar
- Großgerät

Freie Elektronen Laser (FEL)

- Laserstrahlung im Röntgenbereich
- Extrem hohe Photonendichten
- Sehr kurze Lichtpulse (einige 10 fs)
- Photonenergien in der Zukunft bis zu 14 keV

500

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Moderne Röntgenquellen

Nichtlineare Laserprozesse

- High Harmonic Generation
- Extrem kurze Lichtpulse (Rekord 80 as)
- Photonenergien bis ca. 100 eV (?)

< □ ▶

Fortschritt bei Röntgenquellen

Röntgenphysik

Anwendungen

Methoden

- Elementspezifische Analyse von Materie Rumpfniveauspektroskopie
- "Imaging": Abbildung

Beispiele

- Röntgenabsorptionspektroskopie (NEXAFS, EXAFS)
- Magnetismus: Röntgenzirkulardichroismus (XMCD)
- Röntgenmikroskopie
- Elektronenspektroskopie (ESCA)
- Femto-Chemie Molekulare Filme
- Thomographie und 3D Imaging komplexer Strukturen
- Lithographie Halbleitertechnologie

Rumpfniveauspektroskopie

- Lokale Anregung eines Systems
- Element selektive Anregung

• Beispiel:

Anregung eines 2*p* Elektrons in unbesetzte 3*d* Zustände der Übergangsmetalle

- Photonenergie: einige 100 bis 1000 eV abhängig vom Rumpfniveau
- Analyse von komplizierten
 Schichtsystemen, wie Sie z.B. in magnetischen Speichermedien verwendet werden.

Röntgenphysik Rumpfniveauspektroskopie

Anwendung – Magnetismus

Beispiel XMCD

Magnetimus von komplexen Materialien

- Rumpfniveauspektroskopie ist empfindlich auf den Magnetismus von Materialien
- Magnetischer Dichroismus

=

< □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ∃ >

王

Anwendung – Magnetismus

Magnetischer Kontrast eines Gd-Fe Schichtsystems in einem Röntgen-Transmissions-Mikroskop (TXM) P. Fischer et al., Z. Phys. B **101**, 313 (1996)

Q

3

Anwendung – Magnetismus

Schalten eines magnetischen Dots, T. Eimüller et al., J. Appl. Phys 89, 7162 (2001)

Röntgenphysik

Rumpfniveauspektroskopie

ESCA

- Rumpfniveauspektroskopie ist auch sensitive auf die chemische Umgebung eines Atoms
- ESCA Electron
 Spectroscopy for Chemical Analysis
- Nobelpreis 1981 an Kai Siegbahn

<ロト < 回 > < 回 > < 回 > < 回 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

Röntgenphysik Rumpfniveauspektroskopie

FEL – Femto-Chemie

33

Röntgenphysik Rumpfniveauspektroskopie

FEL – Proteinstruktur und Dynamik

Laser

Laser im Röntgenbereich ?

Typische Eigenschaften von Lasern								
	UV	Sichtbar	Infrarot					
Spektralbereich	157-400 nm	400-800 nm	800 nm-10 μ m					

- Sehr hohe Intensität > 10¹⁸W/cm² möglich
- Hohe Kohärenz der Strahlung, Beugungsbegrenzt
- Zeitlich sehr kurze Pulse von einigen fs bei gepulsten Lasern λ =500 nm \Rightarrow T = 1.6 fs
- Sehr hohe Energieauflösung mit CW Lasern

λ

Laser

Prinzip des Lasers

- Verstärkung von Licht durch induzierte Emission
- Beispiel: 4 Niveau Laser
- Pumpen des Überganges $1 \rightarrow 2$
- Relaxation in den Zustand 3
- Schnelle Entvölkerung des Zustandes 4

↓ □
 ↓ □

- ₹ 🕨 🕨

< □ ▶

- Voraussetzung des Laserprozeß: Besetzungsinversion des Übergangs $3 \rightarrow 4$
- \Rightarrow Langlebiger (metastabiler) Zustand 3

500

Эł

∃►

Laser

Aufbau eines Lasers

- Aufbau in Form eines Resonators
- Lasermedium zur Verstärkung des Lichts
- Röntgenlaser ?

Röntgenlaser – Probleme

Spontane Emission nimmt mit der 3. Potenz der Übergangsfrequenz ω zu

$$A_{\it ik} \propto \omega^3$$

- Zusätzlicher Zerfallskanal über den Augerprozeß
- \Rightarrow Es gibt nur sehr wenige langlebige (metastabilen) Zustände
- \Rightarrow Besetzungsinversion ist i.A. sehr schwer zu erreichen
 - Aufbau eines Resonators im Röntgenbereich kaum möglich, da es keine entsprechenden Spiegel gibt
 - Warum will man überhaupt einen im Röntgenbereich $(\lambda < 100 \text{ nm}, \text{E} > 10 \text{ eV})$ haben ? Was wären mögliche Quellen ?

 \sqrt{a}

Das FEL Prinzip

- Nutze freie Elektronen als Verstärkungsmedium
- Beschleunigte Elektronen erzeugen Strahlung
- Elektromagnetisches Feld dieser Strahlung wirkt auf die Elektronen zurück
- Feld moduliert den Elektronenbunch und zwingt ihn zu kohärenter Bewegung

500

- 32

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Das FEL Prinzip

Röntgenphysik FEL

Aufbau eines FEL

- Elektronenquelle: Erzeugung eines Elektronenbunches
- Beschleuniger: Beschleunigung auf relativistische Energien
- Magnetstruktur: Erzeugung der Röntgenstrahlung Synchrotronstrahlung
- Röntgenoptik: Transport der FEL-Strahlung zum Experiment

Realisierung eines FEL

Erster VUV-FEL

FLASH am Hasylab/DESY

Eigenschaften XFEL

- Typische Länge des Beschleunigers: 30-2000 m
- Länge der Magnetstruktur: 30-300 m
- Photonenergiebereich 10 eV - 10 keV
- Pulslängen 10 100 *fs* (jetzt)

Leistungsdaten von FEL's

• Zahl der Photonen, die man an aktuellen Synchrotronquellen in 1 s bekommt, erzeugt ein FEL in 50 fs !

Röntgenphysik FEL

Anwendungen – FEL

Nutzung von FEL's zunächst primär für die Grundlagenforschung

Prozesse in starken Feldern

- Verständnis von komplexen Vielteilchensystem und Prozessen
- Coulombexplosion
- Nichtlineare Prozesse

Ultrakurzzeitphysik (einige 1 fs - 1 ps)

- Dynamik von chemischen Reaktionen (Kernbewegung)
- Dynamik von Elektronentransferprozessen

Experimente an stark verdünnten Targets

- Einzelne Moleküle: freie Radikale, molekulare Ionen
- Massenselektierte Cluster

Röntgenlaser

- Pumpen mit einem Höchstleistungslaser 2.4 TW, 2ω , 450 ps, 7×10^{13} W/cm²
- Dünne Selen Folie
- Spotgröße: 200 μm×1.1 cm
- 20% Neon ähnliche lonen
- Ionisationsenergie
 Fluor ähnlich: Se⁺²³
 1036 eV
 Neon ähnlich: 2540 eV

Following images by D. Attwood

Röntgenlaser

SQA

臣

<ロト < 回 > < 回 > < 回 > < 回 >

Einleitung Röntgenlaser

Röntgenlaser

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 団ト < 団ト = 三日

Röntgenlaser

• 1s²2s²2p⁶3s²3p⁶3d¹⁰ ground state (28 e⁻)

590

E

<ロト < 回 > < 回 > < 回 > < 回 > <

Röntgenlaser

Nichtlineare Optik

- In nichtlinearen Kristallen können Laser "gemischt" werden
- Ausbreitung von elektromagnetischen Wellen in Materie (linearer Ansatz)

$$egin{array}{rcl} ec{\mathcal{D}} &=& \epsilon \epsilon_0 ec{\mathcal{E}} \ ec{\mathcal{E}} &=& ec{\mathcal{E}}_0 \cos \omega_0 t \end{array}$$

gilt bei kleinem Feld $\vec{E_0}$

• Für starke Felder gilt jedoch

$$\vec{D} = \sum_{n} \epsilon_{n} \epsilon_{0} \vec{E}^{n}$$

- Ist $\epsilon_n \neq 0$ werden somit in dem Material Frequenzen mit $\omega_n = n \cdot \omega_0$ erzeugt.
- \Rightarrow High Harmonic Generation (HHG)
- Welche Frequenzen können erzeugt werden ?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

High Harmonic Generation (HHG)

PHYSICAL REVIEW A

VOLUME 57, NUMBER 4

APRIL 1998

Polarization of the 61st harmonic from 1053-nm laser radiation in neon

D. Schulze, M. Dörr, G. Sommerer, J. Ludwig, P. V. Nickles, T. Schlegel, and W. Sandner Max-Born-Institut, D-12474 Berlin, Germany

> M. Drescher, U. Kleineberg, and U. Heinzmann Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany (Received 6 June 1997)

Einleitung Halbleitertechnologie

Halbleiter Industrie – Moore's Gesetz

590

1

<ロト < 回 > < 国 > < 国 > 、

Einleitung Halbleitertechnologie

Halbleiter Industrie – Moore's Gesetz

Röntgenphysik

Halbleiter Industrie – Roadmap

First year of volume production	2001	2003* -2004	2005* -2007-	2007* -2010-	2009* -2013-	2011* -2016-
Technology Generation (Dense lines, printed in resist)	130 nm	90 nm	65 nm	45 nm	32 nm	22 nm
Isolated Lines (in resist) [Physical gate, post-etch]	90 nm [65 nm]	53 nm [37 nm]	35 nm [25 nm]	25 nm [18 nm]	18 nm [13 nm]	13 nm [9 nm]
Chip Frequency	1.7 GHz	4.0 GHz	6.8 GHz	12 GHz	19 GHz	29 GHz
Transistors per chip (HV) $(3 \times \text{ for HP}; 5 \times \text{ for ASICs})$	100 M	190 M	390 M	780 M	1.5 B	3.1 B
DRAM Memory (bits)	510 M	1.1 G	4.3 G	8.6 G	34 G	69 G
Gate CD Control (3σ, post-etch)	5 nm	3 nm	2 nm	1.5 nm	1.1 nm	0.7 nm
Field Size (mm × mm)	25 × 32	25 × 32	22 × 26	22 × 26	22 × 26	22 × 26
Chip Size (mm) (2.2 \times for HP ; to 4 \times for ASIC)	140	140	140	140	140	140
Water Size (diameter)	300 mm	300 mm	300 mm	450 mm	450 mm	450 mm

*Semiconductor Industry Association (SIA), December 2001. *Possible 2-year cycle.

Halbleitertechnologie

Nanoskalige Strukturen

SQ (A

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Einleitung Halbleitertechnologie

EUV Lithography – Abbildung

SQ P

1

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Take Home Message – Einführung

- Röntgen- und Rumpfniveauspektroskopie erlauben eine Elementund Ortsspezifische Analyse von Materialien
- Weiche Röntgenstrahlung (≅0.5-100 nm): Elektronische Struktur Harte Röntgenstrahlung (≤0.5 nm): Geometrische Struktur
- Röntgenstrahlung kann mit Röntgenröhren, Synchrotronquellen oder High Harmonic Generation hergestellt werden
- FEL's und HHG können laserähnliche Röntgenstrahlung produzieren: Hohe Intensität, ultrakurze Pulse
- Weiche Röntgenstrahlung im EUV (Extended UV) ist von großer Bedeutung für die Lithographie und die nächsten Generationen von Halbleiterbauelementen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□