High Harmonic Generation – HHG

 Erzeugung von hohen Harmonischen von intensiver Laserstrahlung an Gasen

High Harmonic Generation – HHG

Beobachtungen

- Ti:Sapphir Laser \approx 800 nm Grundwellenlänge
- Harmonische n > 300 und somit Photonenenergien von > 500 eV wurden beobachtet
- Kohärente, ultrakurze Röntgenpulse mit kleiner Divergenz
- Pulse sind zu kurz, um ein Plasma zu erzeugen

High Harmonic Generation – HHG

- Pulslänge von "State of the Art" Ti:Saphir Laser \approx 5-10 fs = $10^{-14}~\text{s}$
- High-Power Verstärkersysteme: 15-25 fs

 $\mathcal{A} \mathcal{A} \mathcal{A}$

High Harmonic Generation – HHG

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, PRL **76**, 752 (1996)

Röntgenphysik

High Harmonic Generation – HHG

- $\hbar \omega_{cutoff} \cong I_p + 3.2 \cdot U_p$
- *I_p*: Ionisationspotential des Atoms
- U_p : Quiver-Energie des Elektrons durch das Feld der Laserwelle

 $\mathcal{A} \mathcal{A} \mathcal{A}$

High Harmonic Generation – HHG

Drei Stufen Modell

- Das hohe elektrische Feld ionisiert das Atom
- Das Elektron oszilliert in dem Laser Feld
- Elektron kollidiert mit dem Atom und rekombiniert

500

31

<ロト < 回 ト < 亘 ト < 亘 ト -

HHG – Energie

 Berechne das ponderomotive Potential in dem sich das Elektron bewegt:
 Comittelte kinetieche Energie einen freien Elektrone in einem

Gemittelte kinetische Energie eines freien Elektrons in einem elektrischen Feld E_0 mit der Frequenz ω

$$F = ma = eE_0e^{-i\omega t} = m\frac{dv}{dt}$$

$$v = \int \frac{eE_0}{m}e^{-i\omega t} = \frac{eE_0}{-i\omega t}e^{-i\omega t}$$

$$U_p = \text{Kin. Energie}|_{Zeitmittel} = \frac{1}{2}m\bar{v^2}$$

$$= \frac{e^2E_0^2}{2m\omega^2}\left[e^{-i\omega t}\right]_{Zeitmittel}^2 = \frac{e^2E_0^2}{4m\omega^2}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 団ト < 団ト = 三日

HHG – Energie

Was ergeben sich für Zahlen für einen typischen Ti:Saphir Laser

• Pointing-Vektor:

$$I = \bar{S} = \sqrt{rac{\epsilon_0}{\mu_0}} \left| E^2 \right|$$

• Potential:

$$U_{p} = \frac{e^{2}E_{0}^{2}}{4m\omega^{2}} = 9.33 \cdot 10^{-14} \cdot I \left[\frac{W}{cm^{2}}\right] \cdot (\lambda[\mu m])^{2} [eV]$$

= 60 eV@10¹⁵ W/cm⁻² bei $\lambda = 800 \ nm$

• Energieskala für die HHG in Helium

$$egin{array}{rcl} I_{
ho}+3.2 U_{
ho}&=&24.6 \; eV+192 \; eV\ &\cong&220 \; eV \end{array}$$

SQ P

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HHG – Trajektorie

Wie sieht nun die Trajektorie eines Elektrons in diesem Potential aus ? Annahmen:

- Das Elektron ist plötzlich, komplett frei
- Das Elektron startet mit v = 0

$$F = ma = eE_0e^{-i\omega t} = m\frac{dv}{dt}$$
$$v = \int \frac{eE_0}{m}e^{-i\omega t}dt = \frac{eE_0}{-i\omega m}e^{-i\omega t}\Big|_{t_i}^{t'} = \frac{eE_0}{-i\omega m}\left(e^{-i\omega t'} - e^{-i\omega t_i}\right) = \frac{dx}{dt}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HHG – Trajektorie

- Die meisten Elektronen werden nicht mit dem Atom wieder kollidieren und rekombinieren, da die Phase nicht stimmt
- Die transversale Ausdehnung der Elektronenwellenfunktion reduziert die Kollisionsrate weiter

500

HHG – Trajektorie

Berechne die Trajektorie

$$\frac{dx}{dt} = \frac{eE_0}{-i\omega m} \left(e^{-i\omega t'} - e^{-i\omega t_i} \right)$$

$$x = \int_{t_i}^{t_f} \frac{eE_0}{-i\omega m} \left(e^{-i\omega t'} - e^{-i\omega t_i} \right) dt' = \frac{eE_0}{-\omega^2 m} \left(e^{-i\omega t'} - e^{-i\omega t_i} \right) \Big|_{t_i}^{t_f}$$

- Elektron startet am Atom: $x(t_i) = 0$
- Elektronentrajektorie muß am Atom enden: $x(t_f) = 0$
 - Löse die Gleichung für t_f
 - Finde $v(t_f)$
 - Berechne die Kollisionsenergie $E = \frac{1}{2}mv^2$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

HHG – Energietransfer

- Maximale Rückkehrenergie ist 3.17 Up
- Maximaler klassischer Energiegewinn wenn das Elektron in den Grundzustand übergeht

HHG

$$\int_{-\pi/2}^{4} \int_{-\pi/2}^{-\pi/2} \int_{-\pi/2}^{197^{\circ}} \int$$

$$E_{cutoff} = I_p + 3.17 U_p$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

HHG – Ultrakurze Pulse

- Typisches Verhalten der HHG Emission
- HHG erfolgt zweimal während eines Lichtzyklus
- HHG Pulse sind sehr kurz: Erreicht hat man inzwischen ca.
 80 as=0.08 fs
- Damit ist man im Bereich der atomaren Zeitskala, der Bohrzeit ≅ 150*as*. Klassische Zeit, die das Elektron im H-Atom f
 ür eine Umrundung des Kerns ben
 ötigt
- Neues Gebiet der Attosekunden Physik

500

HHG – Phasematching

Fokusierung der Strahlung in eine Fiber als Waveguide

Science 280, 1412 (1998), Phys.Rev.Lett. 83, 2187 (1999)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 団ト < 団ト = 三日

HHG – Phasematching

HHG

$$k = \frac{2\pi}{\lambda} \left(1 + P\delta(\lambda) - \frac{1}{2} \left[\frac{u\lambda}{2\pi a} \right]^2 - \frac{1}{2} \frac{N_e r_e \lambda^2}{\pi} \right)$$
$$= Vakuum + Gas + Wavequide + Ionisation$$

- Mit Hohlfibern als Wellenleitern kann man f
 ür niedrige Harmonische ein Phase-Matching realisieren.

Röntgen und EUV Optik

- Optische Materialien
- Abbildungseigenschaften

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Monochromatoren
- Optikfehler
- Ray Tracing

SQ P

Optische Materialien

- Es gibt kein dickes, optisch transparentes Material f
 ür Photonenergie > 11 eV !
- \Rightarrow Keine Linsen, keine Prismen, ...
 - Es können somit nur reflektive Optiken, also Spiegel eingesetzt werden.
 - Großes Problem f
 ür die Lithographie zur Herstellung von Halbleiterstrukturen, da die bekannten und bew
 ährten Techniken nicht mehr eingesetzt werden k
 önnen
 - Kürzeste Lithographie Wellenlänge ist zur Zeit 157 nm = 7.9 eV (F₂-Laser)
 - Erreicht werden sollen 13.5 nm = 92 eV
 - Zur Zeit wird deshalb die EUV Lithographie entwickelt EUV = Extended UV
 - Welche Materialien sind geeignet ?

500

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reflektivität von Materialien

590

Reflektivität von Materialien

Röntgenphysik

590

Reflektivität von Materialien

- Bild Reflektivität AI, Au, C
- Bis ca. 30 eV kann unter Normalem Einfall (Normal incidence) gearbeitet werden
- Bei höheren Energien muß streifender Einfall gewählt werden
- Für einzelne Energien können Multilayer Interferenzspiegel hergestellt werden
- Optimierung von Schichten für EUV Lithographie

500

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EUV Lithographie 1

- ab ca. 2009 wird EUV Strahlung (13.5 nm) Strahlung benötigt um noch kleinere Halbleiterstrukturen herzustellen
- Probleme:
 - Strahlung breitet sich nur im Vakuum aus (Neu)
 - Es können nur reflektive Optiken verwendet werden (neu)
 - Staub auf Masken
 - Welche Strahlungsquellen ?
 - . . .

500

Multilayer 1

 Reflektivität f
ür senkrechten Einfall verschiedener Materialien und von Schichtsystemen

SQ (A

臣

<ロト < 回 > < 回 > < 回 > < 回 >

Multilayer 2

(T. Nguyen, CXRO/LBNL)

Reflektion in einem Mutlilayer an jeder Grenzschicht

Röntgenphysik

Multilayer 3

- Bragg Reflektion
- Reflektivität hängt von der Dicke der Schichten und den optischen Konstanten ab

Röntgenphysik

Multilayer 4

 Reflektivität unter senkrechtem Einfall eine Mo/Si Multilayerstruktur

590

臣

Multilayer 5

Reflektivität eines Multilayer Spiegels

Measured EUV Spectrum of Xenon

 $\mathcal{A} \mathcal{A} \mathcal{A}$

EUV Lithographie 2

EUV Lithographie 3

- Quellen für 13.5 nm Strahlung: Xe Plasma
- Anforderung: >115 W Strahlungsleistung im Bereich 13-14 nm
- Repetitionsrate >10,000 Hz
- Laser Plasma oder Gasentladungsplasma (oder Synchrotron/FEL)

Gasentladungsplasma

- Sogenannte Z-Pinch Entladung
- Problem: Debris der Entladung zerstört die nachfolgende Optik
- Wärmelast in der Entladung
- Für 115 W EUV Leistung werden mehr als 20 kW elektrische Leistung in das Plasma gesteckt !

Gasentladungsplasma

Laserplasma

- Erzeugung eines Strahls oder von Tröpchen aus flüssigem/fest Xenon im Vakuum Super Sonic Beam Expansion
- 1.2 kW Laserleistung bei 10 kHz liefern "nur" 10 W EUV Leistung
- 34 kW Laserleistung werden voraussichtlich benötigt
- Weniger Probleme mit Debris, keine schmelzenden Elektroden

• Laser: Wie bekommt man die Leistung in das Plasma hinein ?

z-Pinch: Wie bekommt man die Wärmeleistung wieder heraus ?

Röntgenphysik

EUV Monochromatoren

- Synchrotron- und Wigglerstrahlung ist kontinuierlich
- Undulator- und FEL Strahlung hat Spektral auch noch eine relativ große Bandbreite $E/\Delta E = N$
- Strahlung muß monochromatisiert werden

5 - 30 eV	Normal incidence Monochromatoren (NIM)
10 eV - 2 keV	Gitter Monochromatoren (SGM, PGM)
> 2 keV	Kristallmonochromatoren

• Es gibt keine dispersiven Medien \Rightarrow Verwendung von Reflektionsgittern

500

(日)

Abbildungseigenschaften

Fermat'sches Prinzip

Der optische Weg zwischen zwei Punkten A und B muß ein Extremum annehmen. Optischer Weg $F = \overline{AP} + \overline{PB}$ $P(\xi, \omega, \ell)$: Koordinaten eines Spiegels

$$\frac{\partial F}{\partial y} = 0$$
 und $\frac{\partial F}{\partial z} = 0$

Oberfläche wird durch Polynom beschrieben

$$egin{aligned} \xi(\omega,\ell) &=& \sum_{i=0}^{\infty}\sum_{j=0}^{\infty}a_{ij}\omega^i\ell^j\ a_{00} &=& a_{10}=0, \qquad j= ext{even} \end{aligned}$$

(日)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Abbildungseigenschaften

Wichtige abbildene Elemente Definiere die Abstände *r* und *r'* vom Spiegelzentrum zum Bild und Objektpunkt.

$$r := \overline{AP}$$
 $r' := \overline{PB}$
 $\theta := Winkel zur Flächennormale$

- Toroid
- Paraboloid
- Ellipse

Abbildungseigenschaften

Wichtige abbildene Elemente Definiere die Abstände *r* und *r'* vom Spiegelzentrum zum Bild und Objektpunkt.

> $r := \overline{AP}$ $r' := \overline{PB}$ $\theta :=$ Winkel zur Flächennormale

Toroid

Zwei verschiedene Radien in *y* und *z* Richtung *R* und ρ . Spezialfall **Sphäre**: $R = \rho$

Meridionaler Fokus
$$\left(\frac{1}{r} + \frac{1}{r'}\right) \frac{\cos \theta}{2} = \frac{1}{R}$$

Sagittaler Fokus $\left(\frac{1}{r} + \frac{1}{r'}\right) \frac{1}{2\cos \theta} = \frac{1}{\rho}$
Abbildungseigenschaften

Wichtige abbildene Elemente Definiere die Abstände *r* und *r'* vom Spiegelzentrum zum Bild und Objektpunkt.

$$r := \overline{AP}$$
 $r' := \overline{PB}$
 $\theta :=$ Winkel zur Flächennormale

Paraboloid

$$y^{2} + z^{2} = 4ax$$
$$x_{0} = a \tan^{2} \theta$$
$$y_{0} = 2a \tan \theta$$

<ロト < 団 ト < 巨 ト < 巨 ト

SQ (A

Abbildungseigenschaften

Wichtige abbildene Elemente

Ellipsoid

Abbildungseigenschaften

• Optischer Weg
$$\vec{AO_A} + \vec{O_AO} + \vec{OP}$$

$$\vec{AP} = \begin{pmatrix} 0\\0\\-z \end{pmatrix} + \begin{pmatrix} -r\cos\alpha\\-r\sin\alpha\\0 \end{pmatrix} + \begin{pmatrix} \xi\\\omega\\\ell \end{pmatrix}$$
$$\vec{AP} = |\vec{AP}| = \sqrt{(\xi - r\cos\alpha)^2 + (\omega - r\sin\alpha)^2 + (\ell - z)^2}$$
$$\vec{BP} = |\vec{BP}| = \sqrt{(\xi - r'\cos\alpha)^2 + (\omega - r'\sin\alpha)^2 + (\ell - z')^2}$$

• Zentraler Strahl auf der Optik

$$\left(\frac{\partial F}{\partial \ell}\right)_{\xi=\omega=\ell=0} = 0 \qquad \Rightarrow \qquad \frac{z}{r} = \frac{z'}{r'}$$

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reihenentwicklung Toroid

 Um F allgemein zu berechnen, müssen die Koeffizienten a_{ij} der Reihenentwicklung

$$\xi(\omega,\ell) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} \omega^{i} \ell^{j}$$

bestimmt werden.

• Allgemein:

$$\begin{array}{ll} a_{02} = \frac{1}{2\rho} & a_{20} = \frac{1}{2R} & a_{22} = \frac{1}{4R^2\rho} \\ a_{04} = \frac{1}{8\rho^3} & a_{40} = \frac{1}{8\rho^3} \\ a_{12} = 0 & a_{30} = 0 \end{array}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 団ト < 団ト = 三日

Reihenentwicklungen

• Sphäre:

$$\rho = R$$

• Planspiegel:

$$m{R}
ightarrow\infty,
ho
ightarrow\infty\Rightarrowm{a}_{ij}=m{0}$$

• Paraboloid:

$$a_{02} = \frac{1}{4r'\cos\theta} \qquad a_{20} = \frac{\cos\theta}{4r'} \qquad a_{22} = \frac{3\sin^2\theta}{32r'^3\cos\theta}$$
$$a_{04} = \frac{\sin^2\theta}{64r'^3\cos^3\theta} \qquad a_{02} = \frac{5\cos\theta\sin^2\theta}{64r'^3}$$
$$a_{12} = -\frac{\tan\theta}{8r'^2} \qquad a_{30} = -\frac{\sin\theta\cos\theta}{8r'^2}$$

590

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Beugungsgitter

 Identische Behandlung Optischer Weg

$$m{F}=m{A}m{P}+m{P}m{B}+m{N}m{k}\lambda\omega$$

mit

- N Liniendichte
- k Beugungsordnung $\pm 1, \pm 2, \ldots$
- λ Wellenlänge des Lichts
- ω Position in der Dispersionsrichtung
- Reihenentwicklung des optischen Weges F

$$\begin{split} F &= F_{000} + \omega F_{100} + \frac{1}{2} \omega^2 F_{200} + \ell^2 F_{020} + \omega^3 F_{300} \\ &+ \omega \ell^2 F_{120} + \omega^4 F_{400} + \omega^2 \ell^2 F_{220} + \ell F_{040} + \dots \end{split}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 団ト < 団ト = 三日

Abbildungseigenschaften – Optischer Weg

$$F_{000}=r+r'$$

Gitter Gleichung $F_{100} = Nk\lambda - (\sin \alpha + \sin \beta)$

Meridional Fokus

$$F_{200} = (\cos^2 \alpha/r) + (\cos^2 \beta/r') - 2a_{20}(\cos \alpha + \cos \beta)$$

Sagittaler Fokus $F_{020} = 1/r + 1/r' - 2a_{02}(\cos \alpha + \cos \beta)$

Primary Coma

$$F_{300} = T(r,\alpha)/r \sin \alpha + T(r',\beta) \sin \beta - 2a_{30}(\cos \alpha + \cos \beta)$$

Astigmatic Coma

$$F_{120} = S(r, \alpha)/r \sin \alpha + S(r', \beta) \sin \beta - 2a_{12}(\cos \alpha + \cos \beta)$$

mit

$$T(r,\alpha) = (\cos^2 \alpha/r) - 2a_{20} \cos \alpha \quad , \quad S(r,\alpha) = (1/r) - 2a_{02} \cos \alpha$$

Abbildungseigenschaften

- Mit dem Fermat'schen Theorem lassen sich damit im Prinzip beliebige Optiken analytisch berechnen und optimieren
- Optimieren heißt, dass die höheren Beiträge F_{klm} (Abberationen) zum optischen Weg F verschwinden
- ⇒ Verwendung von vielen optischen Komponenten in z.B. Kameraobjektiven
 - Bei einer Optik mit verschiedenen Komponten wird dies sehr schnell sehr aufwendig!
 - Ungeeignet f
 ür XUV und R
 öntgenoptiken
 - Lösung: Ray Tracing Programme

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三

Ray Tracing

Abbildung eines Quellpunktes mit drei verschiedenen Spiegeln

 $\vartheta = 85^{\circ}$ zur Spiegelnormalen, r = 10, r' = 1

Sphäre

Toroid

Ellipsoid

Röntgenphysik

Ray Tracing

- Prinzip des Ray Tracing beruht auf der geometrischen Optik
- Berechne den Strahlengang von einer Quelle S bis zu einem Bildpunkt F f
 ür viele unterschiedliche Strahlen

- Strahlen gehen von einer Quellebene ausgehen und treffen auf eine Bildebene.
- Komplizierte Optiken werden berechnet, indem die Bildebene eines optischen Elementes k, als Quellebene des optischen Elementes k + 1 verwendet wird.

Ray Tracing – Shadow

File Edit Run Workspace Tools Options		
	Help File Edit Run Workspace Tools Options	<u>H</u> elp
Exit Load Save Edit Cut Source Trace Run Plot	Exit Load Save Edit Cut Source Trace Run Plot	
Source Definition Source Degin.dat Source [path: begin.dat] Outree Source Type Baurce Number of random rays Source Wiggler.undulator.elli_wigg Number of random rays 10000 Inspector Spatial Type General Spatial Type OF Image: Second	Toolbox MAIN MENU OE 1 System Source plane distance 100 Barrace 10 Inspector Incidence angle Barrace 85 Source 85 Barrace 10 Inspector 85 Write out Inc/Ref angles YES Write out Inc/Ref angles YES Write out Inc/Ref angles YES Mirror Orientation Angle 0 Source file begin.dat Barrace 10 Source file begin.dat Diffraction MIRBOB System Figure ELLIPTICAL Yes System Crystal No Yes Diffraction MIRBOB Crystal NO Mirror movement NO PlotXY 1 Exit Slit PlotXY 2 Modified Surface No Yes Source Movement NO Source Movement NO	
Info:: Parameter Editor: Enter `?' in any field for help Selection:: Source Edit:: Source	Info:: Parameter Editor: Enter '?' in any field for help Selection:: OE 1 Edit:: OE 1	
Current directory:: /home/martins/tex/vl/Physik des FEL/Data/shadow ChDir Clipboard:: Empty	Current directory:: /home/martins/tex/vl/Physik_des_FEL/Data/shadow ChDir Clipboard:: Empty	

einer Quelle

eines einzelnen Spiegels

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tangentenfehler

 Was ist die kritische Größe bei der Qualität der optischen Komponenten ?

- Tangentenfehler (slope error) sind Winkelabweichungen von der perfekten Oberfläche
- Winkelfehler führen zu Fehlern in der Fokusierung und begrenzen die Auflösung von Monochromatoren

Erreichbare Fehler

Fläche	Fehler (RMS)	
Plan, Sphärisch	0.05" - 0.1"	
Zylinder	0.3" - 0.5"	
Elliptisch	0.5" - 1"	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

< ロ > < 同 > < 三 > < 三 > <

 $1'' \equiv 0.5 \mu m$ Abweichung auf 100 mm Länge 0.05" Meßgrenze !

Röntgenphysik

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Tangentenfehler – Beispiel

Gitter: k = 1200 Linien/mm, Beugungsordnung N = 1, $\alpha = 86^{\circ}, \beta = -80^{\circ}$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Tangentenfehler – Beispiel

Auflösung ohne slope			Auflösung mit slope error		
r' = 8 I	m, A	ustrittsspalt s =	Tangentenfehler 1" $\Rightarrow \beta' = \beta \pm$		
10 μ m			1″		
$\Delta\lambda$ =	= ,	$\frac{1}{1} \cdot \cos \beta \Delta \beta$	$E'_{+} = 112.89287 \ eV$		
	K	N 1040	$E'_{-} = 112.87797 \ eV$		
Δeta ?	$\approx \frac{s}{r'}$	$\frac{1}{7}, \Delta\lambda \approx \frac{1240}{E^2}\Delta h$	$E \Rightarrow \Delta E = E'_+ - E' = 15 meV$		
$\Rightarrow \Delta E$	$\approx \frac{E}{k}$	$\frac{z^2}{N} \cdot \frac{s}{r'} \cdot \frac{\cos\beta}{1240} = 2$	$m \overline{eV} \frac{\Delta E}{E} \approx 7500$		
$\Rightarrow \frac{\Delta E}{E} \neq $	≈ 6	0000			

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Effektive Tangentenfehler

 Bei der sagittalen Fokusierung wirkt nur ein effektiver Tangentenfehler

 Bei der sagittaler Fokusierung spielt der Tangentenfehler eine kleiner Rolle

 $\alpha = 5^{\circ} \Rightarrow \sin \alpha = 0.09$

• $\sin \alpha$ wird auch als *Forgiveness Faktor* bezeichnet

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Forgiveness Faktor

• Einfallender Strahl \vec{k}_0 und Spiegelnormale \vec{n}

 $\vec{k}_0 = (0, k_y, k_z) = k(0, -\sin\theta, \cos\theta)$ $\vec{n} = (0, 1, 0)$

Reflektierter Strahl

 \Rightarrow

$$ec{k}_0'=ec{k}_0-2(ec{k}_0\cdotec{n})ec{n}$$

• Tangentenfehler α entspricht einem gedrehten Spiegel mit der Normalen

$$\vec{n}' = (\sin \alpha, \cos \alpha, \mathbf{0})$$

$$\vec{k}_{0} = k \begin{pmatrix} 0 \\ -\sin\theta \\ \cos\theta \end{pmatrix} - 2 \begin{bmatrix} 0 \\ -\sin\theta \\ \cos\theta \end{pmatrix} \cdot k \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{pmatrix}$$

Forgiveness Faktor

 \Rightarrow

$$\vec{k}'_{0} = k \begin{bmatrix} \begin{pmatrix} 0 \\ -\sin\theta \\ \cos\theta \end{pmatrix} - 2(-\sin\theta\cos\alpha) \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{bmatrix} \end{bmatrix}$$
$$= k \begin{pmatrix} \sin\theta\sin2\alpha \\ \sin\theta\cos2\alpha \\ \cos\theta \end{pmatrix}$$

• Die Projektion des reflektierten Strahls auf die xz-Ebene schließt mit der z-Achse einen Winkel φ ein

$$\frac{1}{k_{0}} + \frac{1}{k_{0}} +$$

Forgiveness Faktor

• Ablenkwinkel aus der yz-Ebene heraus ψ – Wirkung des Tangentenfehlers

$$\sin\psi = \frac{k_x}{k} = \frac{k\sin\theta\sin 2\alpha}{k} = \frac{\sin\theta}{k}\sin 2\alpha$$

Die Wirkung des Tangentenfehlers wird somit um den Faktor $\sin \theta$ verkleinert.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EUV Monochromatoren

- Synchrotron- und Wigglerstrahlung ist kontinuierlich
- Undulator- und FEL Strahlung hat Spektral auch noch eine relativ große Bandbreite $E/\Delta E = N$
- Strahlung muß monochromatisiert werden

5 - 30 eV	Normal incidence Monochromatoren (NIM)
10 eV - 2 keV	Gitter Monochromatoren (SGM, PGM)
> 2 keV	Kristallmonochromatoren

• Es gibt keine dispersiven Medien \Rightarrow Verwendung von Reflektionsgittern

590

(日)

Normal Incidence Monochromatoren (NIM)

- Sinnvoll im Energiebereich bis ca. 35 eV
- Vorteil: Sehr einfacher Aufbau mit einem sphärischen Gitter, das Quelle (Eintrittsspalt) auf den Austrittsspalt abbildet

- Welche Bedingungen müssen erfüllt sein, für eine optimale Performance des NIM ? Idealerweise *F_{ijk}* = 0 für alle α, β, r, r'
- Läßt sich leider nicht realisieren

SQ (

Normal Incidence Monochromatoren (NIM)

• Es muß *F*₂₀₀ minimiert werden. Für ein sphärisches Gitter gilt

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right)$$

• NIM: *r* = *r*′

$$\Rightarrow r = \frac{1}{R} \cdot \frac{\cos \alpha + \cos \beta}{\cos^2 \alpha + \cos^2 \beta}$$
$$NK\lambda = \sin \alpha + \sin \beta$$

 Für einen optimalen Fokus müssen also r, α und β variiert werden.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Grazing Incidence Monochromatoren

- Im wesentlichen zwei Typen
 - Sphärischer Gitter Monochromator (SGM)
 - Plan-Gitter Monochromator (PGM)
- Einfacher SGM ist der "Dragon" Monochromator

Aufbau ähnlich dem NIM, aber streifender Einfall

- Um zu fokusieren ($F_{200} = 0$) müssen *r* oder *r'* verändert werden
- ⇒ Komplizierter Aufbau, der adaptive Spiegel vor oder hinter dem Monochromator erforderlich macht.
 - Coma Term F_{300} verschwindet nicht für jede Wellenlänge λ
 - Typische Parameter

$$R = 10 - 50$$
 m, $r = 1 - 3$ m, $r' = 5 - 10$ m

S a C

- 4 日 🕨 🖌 🖉 🕨 🖌 🗐 🕨

Rowland Bedingung

• Abberationen von sphärischen Optiken

$$F_{020} = \frac{1}{r} + \frac{1}{r'} - \frac{1}{R}(\cos \alpha + \cos \beta)$$

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right) \quad \text{Defokusierung}$$

$$F_{300} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right)\frac{\sin \alpha}{r} + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right)\frac{\sin \beta}{r'} \quad \text{Cor}$$

enthalten jeweils

$$\left(\frac{\cos^2\alpha}{r}-\frac{\cos\alpha}{R}\right)$$

Wähle

 $r=R\cos\alpha$ und $r'=R\cos\beta\Rightarrow F_{200}=0$ und $F_{300}=0$

 Sowohl der Defokusierungsterm als auch der Coma Term verschwinden

Röntgenphysik

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Rowland Kreis Monochromator

- Bewegung des Austrittsspalt auf dem Rowlandkreis
- Schwer zu realisieren bei einem Monochromator an einem Speicherring
- Kleinere Monochromatoren werden zur
 Spektroskopie eingesetzt *R'* kann bis zu 0.5-1 m groß werden.

Fix Fokus SGM (FSGM)

- Wie kann das Problem umgangen werden, dass r, r' variieren müssen ?
- Verwende eine zweiten Spiegel, um einen beliebigen Einfallswinkel α am Gitter zu realisieren.
- Spiegel muß so gedreht werden, daß der Strahl immer auf die gleiche Stelle des Gitter trifft.

 Zur Minimierung des Coma Terms F₃₀₀ kann jetzt noch zusätzlich die gesamte Spiegel-Gitter Kombination verschoben werden, so daß r und r' angepaßt werden können, wobei r + r' = const ist.
 Mechanisch sehr aufwendig !

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 回 > < 回 > < 回 > < 回 > <

Plan-Gitter Monochromatoren (PGM)

Auch ein planes Gitter besitzt fokusierenden Eigenschaften

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right)$$
$$= \frac{\cos^2 \alpha}{r} + \frac{\cos^2 \beta}{r'} \text{ mit } R \to \infty$$

*F*₂₀₀ verschwindet, wenn [H. Petersen, Opt. Commun. **40**, 402 (1982)]

$$\frac{r'}{r} = -\left(\frac{\cos\beta}{\cos\alpha}\right)^2 = -c_{ff}^2 = const.$$

 SX700 Design (Petersen Monochromator) realisiert diese Bedingung

500

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan-Gitter Monochromatoren (PGM)

Plan-Gitter Monochromatoren (PGM)

Auch ein planes Gitter besitzt fokusierenden Eigenschaften

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right)$$
$$= \frac{\cos^2 \alpha}{r} + \frac{\cos^2 \beta}{r'} \text{ mit } R \to \infty$$

*F*₂₀₀ verschwindet, wenn [H. Petersen, Opt. Commun. **40**, 402 (1982)]

$$\frac{r'}{r} = -\left(\frac{\cos\beta}{\cos\alpha}\right)^2 = -c_{ff}^2 = const.$$

- SX700 Design (Petersen Monochromator) realisiert dies
- Realisierung mit einem elliptischen Spiegel Monochromator benötigt keinen Eintrittsspalt

• Problem !

PGM

- Ellipsoid verringert die erreichbare Auflösung deutlich
- Neues Design mit kollimiertem Licht
 R. Follath und F. Senf, Nucl. Instrum. Methods A390, 388 (1997)

- Ausnutzen der sagittalen Fokusieren mit zwei Zylinderspiegeln
- Zylinderspiegel 1 parallelisiert das Licht in der Dispersionrichtung $r \to \infty$
- Zylinderspiegel 2 fokussiert sagittal auf den Austrittsspalt
- *c*_{ff} kann frei variiert werden
- Höhere Auflösung kann erreicht werden, da bei großem c_{ff} die effektive Quelle verkleinert wird, und die Dispersion vergrößert wird

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Kristallmonochromatoren

- Für Photonenergien > 2 keV läßt die Effizienz von Gittermonochromatoren sehr schnell nach.
- Photonenergie $\hbar \omega = 2 \text{ keV} \equiv 6.2 \text{\AA}$ Wellenlänge
- Wellenlänge kommt in die Größenordnung der Gitterabstände im Kristall !
- Guter Einkristall (z.B. Si) besitzt ein quasi perfektes Gitter, an dem Beugung und damit dann die Monochromatisierung stattfindet

- Bei Doppel-Kristall-Monochromatoren (DCM) werden zwei Kristall hineinander geschaltet
- Höhere Auflösung und Strahl hat nach dem DCM wieder die gleiche Richtung

FEL Facilities

- Überblick
- Die TESLA Test Facility (TTF)

<ロ > < 団 > < 団 > < 豆 > < 豆 > 、

- FLASH
- Der europäische X-FEL

500

E

FELs – Überblick

- Es gibt weltweit bereits einige FEL's (http://sbfel3.ucsb.edu/www/vl_fel.html)
- Die meisten existierenden Geräte arbeiten als Oszillatoren mit Infrarot Bereich
- Beispiel FELIX (Niederlande)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E.

∃►

< □ ▶ < ┌┐ ▶

=

FELs – Überblick

۲

Photonenergiebereich 4.5 - 240 μ m

Optischen
 Parametrischem
 Amplifier (OPA)
 2.5 - 18 μm und
 230 - 460 nm

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

SQA

FELs – Überblick

• Betrieb eines FEL in dem Speicherring ELETTRA (Trieste, Italien)

• Im Oszillatorbetrieb ist der UV Bereich bis $\lambda = 190$ nm zugänglich.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

31

XUV und Röntgen FELs

• Zur Zeit werden verschiedene XUV und Röntgen FEL's geplant, die auf dem SASE Prinzip oder aber dem HHG Prinzip beruhen.

FEL	Ort	Energiebereich	Inbetriebnahme
TTF Phase I	DESY Hamburg	-12 eV	bis 2002
FLASH	DESY Hamburg	20-200 eV	2005
X-FEL	DESY Hamburg	0.5-14.4 keV	2012
LCLS	SLAC Stanford	0.8-10 keV	2008
SCSS	Spring8 Japan	10 keV	2008
FERMI	ELETTRA Trieste	10-1000 eV	2010(?)
MAX 4	MAXLab Lund	10-1000 eV	?
4GLS	Daresbury UK	?	?
	•		

TTF 1

Design des FEL an der TESLA Test Facility (TTF) in der 1. Phase

- Elektronen werden mit einer Laserquelle erzeugt
- Beschleunigung mit zwei Supraleitenden Niob Cavities (T = 2 K)
- Kompression des Elektronenbunch mit einem magnetischen Bunchkompressor
- 15 m langer Undulator
- Die TTF Phase 1 wurde im Frühjahr 2002 erfolgreich abgeschlossen
TTF1 – Die Elektronenquelle

- Aus den Eigenschaften des FEL Verstärkers folgt, daß der Elektronenbunch von sehr hoher Qualität sein muß
 - kleine Emittanz
 - kleiner Energiespread
- Ansonsten ist die Verstärkung zu klein !
- Elektronenstrahlqualität muß über die gesamte Länge des Undulators von einigen 10 m (TTF) bis zu einigen 100 m (X-FEL) erhalten bleiben
- Um sehr kurze Lichtpulse zur erhalten, muß auch der Elektronenbunch sehr kurz sein
- Verwendung eines gepulsten Lasersystems, um Elektronen zu erzeugen.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □

TTF1 – Die Elektronenquelle

<ロト < 団 > < 巨 > < 巨 >

- Fokusierung eines Frequenzvervierfachten ND:YLF Lasers auf die Kathode (Max Born Institut (MBI) Berlin)
- Extraktion der in dem Laserplasma entstehenden Elektronen mit einem elektrischen Feld
- Erzeugung eines kurzen Elektronenbunch mit ca. 1 nC
- Beschleunigung des erzeugten Bunches mit einem ersten supraleitenden Beschleunigungsmodul

 $\mathcal{A} \mathcal{A} \mathcal{A}$

TTF1 – Bunch Kompressor

 Um den Puls weiter zu verk
ürzen wird eine magnetische Bunchkompression eingesetzt.

500

3

<ロト < 回 ト < 亘 ト < 亘 ト -

TTF1 – Undulator

• 3 Undulatormodule mit einer Gesamtlänge von 15 m

TTF1 – Undulator

 Steerer Magnete zum "Durchf\u00e4deln" des Elektronenstrahls durch den Undulator

TTF1 – Gesamtaufbau

• Gesamtplan der TTF1 Facility am Hasylab bei DESY

TTF1 – Zeitstruktur

- Durch die Energieversorgung der Hochfrequentcavities zur Beschleunigung der Elektronen ist die Zeitstruktur des FEL vorgegeben
- 1.3 GHz Radiofrequenzleistung von einem 10 MW Clystron versorgt die Cavities f
 ür ca. 1 ms bei einer maximalen Repetitionsrate von 10 Hz.
- Jeder Bunch/Puls besteht nun selber wieder aus einer Anzahl an Mikrobunchen

TTF1 – Parameter

	Pha	FLASH						
	(Design)	(Erreicht)						
Elektronenstrahl								
Energie (GeV)	0.25	0.24	1.0					
Emittance (π nm rad)	8.0	12	1.0					
Bunch Ladung (nC)	1	2.8	1					
RMS Bunch Länge	240	30	48					
RMS Bunch Breite	68	110	67					
Bunche pro Sekunde	18000	bis 70	8000					
Photonenstrahl								
Energy (eV)	12	12	192.8					
Peak Leistung (GW)	0.5	1.0	2.3					
Photonen pro Bunch	$2.1 \cdot 10^{14}$	$2.5 \cdot 10^{13}$	3.9 · 10 ¹³					
Mittlere Brillianz	$2.0 \cdot 10^{21}$	$1.0 \cdot 10^{17}$	1.0 · 10 ²³					
Peak Brillianz	$4.3 \cdot 10^{28}$	$2.4 \cdot 10^{28}$	2.2 · 10 ³⁰					
FWHM Spektrale Bandbreite	0.64	1.0	0.46					

FLASH

- Der TTF-FEL in der Phase 1 diente vor allem zum Testen des SASE Prinzips und um die Physik des FEL zu verstehen
- Es wurden aber auch zwei Experimente durchgeführt, die später noch beschrieben werden
- FLASH (früher Phase 2 des TTF-FEL) ist Mitte 2005 in Betrieb gegangen und deckt den Bereich von 20-200 eV Photonenenergie ab
- FLASH liefert Strahlung bis 6.5 nm (190 eV)
- FLASH steht f
 ür Nutzer zur Verf
 ügung stehen, wie ein normaler Speicherring f
 ür Synchrotronstrahlung, allerdings steht nur sehr wenig Strahlzeit zur Verf
 ügung
- Zur Zeit Upgrade für höhere Energien

 $\mathcal{A} \mathcal{A} \mathcal{A}$

FLASH – User Facility

Preliminary layout of the VUV FEL user facility

FLASH – User Facility

- Verschiedene Strahlrohre (Beamlines) am FEL
- Nur ein Strahlrohr hat Licht
- Strahlrohre ohne Monochromator und kleinem Fokus f
 ür maximale Leistungsdichten
- Strahlrohre hinter einem Monochromator f
 ür hochaufgel
 öste Spektroskopie
- Synchronisierter Femtosekunden Laser im sichtbaren (VIS)
 Spektralbereich f
 ür Pump-Probe XUV-VIS Experimente
- Pulsdauer eines FLASH-Pulses ca. 10-30 fs
- Es konnte erstmalig verschiedene Experimente durchgeführt
 - Zeitaufgelöste Experimente nach eine Rumpfniveauanregung
 - Nichtlineare Effekte im XUV und Röntgenbereich
 - Experimente an sehr verdünnten Systeme (Cluster, Radikale, ...)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

TTF2 – User Facility

Der TESLA X-FEL

- Im Rahmen des TESLA Projektes Tera Electron Volt
 Energy
 Superconducting
 Linear
 Accelerator
 ist auch ein FEL f
 ür den
 Röntgenbereich (X-FEL) geplant
- Plan: Ausnutzen eines Teils des 33 km langen Beschleunigers von TESLA für den X-FEL
- Photonenergie 500 eV-14.4 keV
- User Facility mit mehreren FEL's, die parallel betrieben werden

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

500

Der TESLA X-FEL

- Ursprüngliche Planung
- Entscheidung des BMBF im Frühjahr 2003:
 - Bau eines X-FEL, Noch keine Festlegung eines Standortes für TESLA
- X-FEL im Rahmen eines europäischen Projektes
- Wahl eines neuen
 Standortes f
 ür den
 X-FEL

Der X-FEL – Standort

Europäischer X-FEL – Die Trasse

▲□▶▲□▶▲□▶▲□▶ = 少�?

Röntgenphysik

Europäischer X-FEL – Die Trasse

www.xfel.net

Europäischer X-FEL – Der Tunnel

Europäischer X-FEL – Der Tunnel

Röntgenphysik

Europäischer X-FEL – Die FEL Halle

Europäischer X-FEL – Die FEL Halle

Röntgenphysik

Europäischer X-FEL – Die Strahlrohre

Europäischer X-FEL – Parameter

	T	ſF	X-FEL					
	Phase 1	FLASH	1.0 nm	0.1 nm				
Elektronenstrahl								
Energie (GeV)	0.24	1.0	23	25				
Emittance (π nm rad)	12	1.0	0.04	0.03				
Bunch Ladung (nC)	2.8	1	1	1				
RMS Bunch Länge	30	48	25	25				
RMS Bunch Breite	110	67	23	38				
Bunche pro Sekunde	bis 70	72000	57500	57500				
Photonenstrahl								
Energy (eV)	12	192.8	1231	12311				
Peak Leistung (GW)	1.0	2.3	185	37				
Photonen pro Bunch	$2.5 \cdot 10^{13}$	$3.9 \cdot 10^{13}$	$1 \cdot 10^{13}$	$1.8 \cdot 10^{12}$				
Mittlere Brillianz	$1.0 \cdot 10^{17}$	1.0 · 10 ²³	$5.2 \cdot 10^{24}$	$4.9 \cdot 10^{25}$				
Peak Brillianz	$2.4 \cdot 10^{28}$	$2.2 \cdot 10^{30}$	$9.3 \cdot 10^{32}$	$8.7 \cdot 10^{33}$				
Spektrale Bandbreite	1.0	0.46	0.4	0.08				

X-FEL – Undulatoren

Device	Тур	E _e	$\hbar\omega$	λ_{u}	Gap	L _{Sat}	L _{Tot}
		GeV	keV	mm	m	m	
SASE 1	planar	30	4.9 - 12.4	60	19-12	220-150	323.5
		25	3.5 - 12.4		22-12	220-120	
		20	2.5 - 8.25		22-13	175-100	
SASE 2	planar	25	14.4	45	12	210	311.1
SASE 5	circular	23	0.5 - 3.1	107	35-12	120-60	176.9
		15	0.2 - 1.2		35-12	95-50	

- Mit den verschiedenen SASE Undulatoren l\u00e4\u00dft sich somit ein sehr gro\u00dfer Energiebereich abdecken
- Sehr hohe Leistungsdichte
- Extrem hohe Brillianz
- Scharfer SASE Peak auf einem breiten Untergrund spontaner Strahlung

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Europäischer X-FEL – Undulator Spektren

LCLS – Linac Coherent Light Source

 Am SLAC in Standford, California wird zur Zeit auch ein X-FEL entwickelt

- 1 km langer zusätzlicher Linearbeschleuniger integriert in den schon existierenden 2 km Beschleuniger
- Nur ein SASE
 Undulator für den
 Röntgenbereich
- Betrieb seit Anfang 2009

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

32

4. Generation Light Sources

590

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

4. Generation Light Sources

- Kombination eines Linearbeschleunigers und eines Speicherring
- Beschleunigung im Linearbeschleuniger

 - \rightarrow höhere Brillianz
- Energy Recovery Linac (ERL)
 - \rightarrow Elektronen werden nach einem Umlauf wieder in die Cavities geleitet

 \rightarrow Elektronen induzieren ein Feld in den Cavities und verlieren Energie

- $\rightarrow Energier \ddot{u} ckgewinnung$
- Kombination mit einem Freie Elektronen Laser (FEL)
- http://www.4gls.ac.uk/

500

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三

FEL – Seeding

- Das Spektrum eines SASE Undulators hat sehr viele scharfe Spikes
- Ursache ist, das der FEL Prozess aus dem Schrotrauschen heraus startet
- Wie kann man das umgehen ?
- Lösung: Es muß XUV/Röntgenstrahlung ohne statistische Fluktuationen verstärkt werden!
- Strahlung wird von einem ersten Undulator erzeugt, der im linearen Betrieb läuft
- Ein Monochromator mit der Bandbreite eines Spikes selektiert einen Spike
- Verstärkung bis zur Sättigung in einem zweiten Undulator hinter dem Monochromator
- Einbau in FLASH ist für ??? vorgesehen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

FLASH – Seeding

 Lichtpuls des ersten SASE FEL muß im zweiten Undulator mit dem gleichen Elektronenbunch, der den Lichtpuls erzeugt hat überlagert werden.

SQ (A

32

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TTF2 – Seeding

- Spektrum mit vielen Spikes ohne Seeding und einer Auflösung im Bereich von 0.5%
- Durch das Seeding erhält man als Output Signal nur einen scharfen Peak mit einer Auflösung im Bereich von $E/\Delta E \cong 20000$
- Keine statistischen Schwankungen des FEL Signals mehr aufgrund der exp(I/ < I >) Statistik

 $\mathcal{A} \mathcal{A} \mathcal{A}$

31

TTF2 – Monochromator

- Hinter dem FEL wird ein weiterer Monochromator benötigt
- Aufgaben
 - Diagnose der FEL Strahlung
 - Monochromatisierte Strahlung mit $E/\Delta E \ge 50000$ für höchstaufgelöste Spektroskopie
- Problem: Sehr hohe Leistungsdichte der FEL Strahlung kann optische Komponenten zerstören
- Lösung
 - Verwendung von DLC (Diamond Like Carbon) Schichten auf einem Silizium-Spiegel
 - Einfallswinkel relativ zur Oberfläche der optischen Komponenten muß möglichst klein sein

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 団ト < 団ト = 三

TTF2 – Monochromator

Röntgenphysik