	nängen die eistung linear /ext einen bestimmten linear zu und erreicht wird dann als nicht ulytischen Lösungen sch gelöst werden le zur Lösung	diskutiert werden.	240
Freie Elektronen Laser Sättigungsbereich Der Sättigungsbereich	 Im diskutierten low und high Gain Bereich F Ausgangsleistung und die eingekoppelte Le zusammen Überschreitet die eingekoppelte Leistung M Wert, nimmt die Leistung nimmt nicht mehr irgendwann die Sättigung – dieser Bereich linearer oder Sättigungsbereich bezeichnet Im Sättigungsbereich lassen sich keine ana mehr finden und das Problem muß numeris Es soll im folgenden die prinzipielle Method 	beschrieben werden und deren Ergebnisse	Röntgenphysik

			S S S	241
		en Parameter ronenstrahl fang des Undulator nenstrahl nenstrahl nenstrahl ilung eine	山 ▲ 山 ▼ ▲ 山 ■	
Freie Elektronen Laser Sättigungsbereich	<u> </u>	ärker kann durch die folgend rerden änge des Undulators jndulatorwellenzahl Aagnetfeld des Undulators Frequenz der FEL Strahlung domienelle Energie des Elekt Jomienelle Energie des Elekt elektronenstromdichte am An Elektronenstromdichte am An energieverteilung des Elektro Amplitude des eingekoppelter n folgenden als Energieverte ng an		Röntgenphysik
	FEL Paramete	• Der FEL Verst beschrieben w k_{u} k_{u} k_{u} h_{u} r_{0} i_{0} k_{u} χ_{n} χ_{n} E_{ext} E_{ext} h_{ext} h_{c} E_{ext}		

	slosen Variablen, kann rt werden.	dulators meter oarameter ung des Elektronenstrahl neter ster Amplitude	ひてい 三日 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	242
ameter	l die Wahl von geeigneten dimensions schreibung auf 6 Parameter reduzier	Γl_u Länge des Und Detuning Parar Raumladungsp Effizienzparam Effizienzparam Effizienzparam Effizienzparam Effizienzparam Effizienzparam Effizienzparam Effizienzparam Effizienzparam Effizienzparam Effizienzparam		Röntgenphysik
FEL Par	 Durch die Be 	• Find $\hat{c}_{\hat{c}} = \hat{c}_{\hat{c}} + \hat{c}_{\hat{c}} = \hat{c}_{\hat$	aus.	

Freie Elektronen Laser Sättigungsbereich

Der Sättigungbereich – Hamiltonfunktion	 Aufgrund der verschiedenen N\u00e4herungen, die wir gemacht haben, muß f\u00e5r den Effizienzparameter 	$ ho \ll 1$	gelten. • Wenn ρ sehr klein ist, wird das FEL Feld $\tilde{E}_{\rm out}$ nicht mehr von ρ abhängen und somit erhält man	$ ilde{\mathcal{F}}_{out} = \mathcal{D}(\hat{l}_u, \hat{\mathcal{C}}, \hat{\Lambda}^2_\mathcal{P}, \hat{\mathcal{R}}^2, \hat{\mathcal{E}}_{ext})$	• Im Bereich der Sättigung wird die Ausgangsamplitude E_{out} nicht mehr von \hat{l}_u und \hat{E}_{ext} abhängen, so daß dort dann gelten wird	$ ilde{F}_{sat} = \mathcal{D}(\hat{\mathcal{C}}, \hat{\Lambda}^2_{\mathcal{P}}, \hat{\Lambda}^2_{\mathcal{T}})$		Röntgenphysik 243
---	--	-------------	--	---	---	---	--	-------------------

Freie Elektronen Laser Sättigungsbereich

FEL Verhalten im Sättigungsbereich	• Der Elektronenstrahl wird durch N Makropartikle pro Interval $(0, 2\pi)$ über die Phase ψ simuliert. Die reduzierte Stromdichte ist periodisch in der Phase und ergibt sich zu	$\hat{J}_{z} = -rac{2\pi}{N}\sum_{j=1}^{N}\delta(\psi-\psi_{(j)}), 0\leq\psi\leq2\pi$ $\hat{J}_{z}(\psi+2\pi\cdot n,z) = \hat{J}_{z}(\psi,z)$	 Damit hat man dann 2N + 2 Gleichungen, die den Verstärkungsprozess beschreiben. Wie sehen die Lösungen dieser numerischen Simulationen aus ? 		Röntgenphysik 244
	FEL Verhalten im Sättigungsbereich	 FEL Verhalten im Sättigungsbereich Der Elektronenstrahl wird durch N Makropartikle pro Interval (0, 2π) über die Phase ψ simuliert. Die reduzierte Stromdichte ist periodisch in der Phase und ergibt sich zu 	FEL Verhalten im Sättigungsbereich • Der Elektronenstrahl wird durch <i>N</i> Makropartikle pro Interval (0, 2π) über die Phase ψ simuliert. Die reduzierte Stromdichte ist periodisch in der Phase und ergibt sich zu $\hat{j}_{z} = -\frac{2\pi}{N} \sum_{j=1}^{N} \delta(\psi - \psi_{(j)}), 0 \le \psi \le 2\pi$ $\hat{j}_{z}(\psi + 2\pi \cdot n, z) = \hat{j}_{z}(\psi, z)$	FEL Verhalten im Sättigungsbereich • Der Elektronenstrahl wird durch <i>N</i> Makropartikle pro Interval (0, 2π) über die Phase ψ simuliert. Die reduzierte Stromdichte ist periodisch in der Phase und ergibt sich zu $\hat{j}_{z} = -\frac{2\pi}{N} \sum_{j=1}^{N} \delta(\psi - \psi_{(j)}), 0 \le \psi \le 2\pi$ $\hat{j}_{z}(\psi + 2\pi \cdot n, z) = \hat{j}_{z}(\psi, z)$ • Damit hat man dann $2N + 2$ Gleichungen, die den Verstärkungsprozess beschreiben. • Wie sehen die Lösungen dieser numerischen Simulationen aus ?	FEL Verhalten im Sättigungsbereich • Der Elektronenstrahl wird durch <i>N</i> Makropartikle pro Interval (0, 2π) über die Phase ψ simuliert. Die reduzierte Stromdichte ist periodisch in der Phase und ergibt sich zu $\hat{j}_{z} = -\frac{2\pi}{N} \sum_{j=1}^{N} \delta(\psi - \psi_{(j)}), 0 \le \psi \le 2\pi$ $\hat{j}_{z}(\psi + 2\pi \cdot n, z) = \hat{j}_{z}(\psi, z)$ • Damit hat man dann $2N + 2$ Gleichungen, die den Verstärkungsprozess beschreiben. • Wie sehen die Lösungen dieser numerischen Simulationen aus ?

The Electrone Laser Satisfungsbereich Satisfungsbereich Satisfungsbereich Satisfungsbereich PEL Verhalten im Sätisfungsbereich Undulatorlänge \hat{x} in Abhängigkeit von der reduzierten Undulatorlänge \hat{z} ($\hat{C} = 0, \hat{A}_{\mathcal{D}}^2 \rightarrow 0, \hat{A}_{\mathcal{T}}^2 = 0, \hat{u}_{ext} = 0.1$)	Röntgenphysik 245
---	-------------------

Sättiç
-aser
ronen l
Elekt
Freie

Sättigungsbereich

- Das Feld û steigt bis zu einem Maximalwert an und fällt dann wieder ab.
- Im Maximum ist der Elektronenbunch vollständig durchmoduliert
- Für einen längeren Undulator fallen ein Teil der Elektronen in die wird wieder Energie aus dem FEL Feld an den Elektronenstrahl Beschleunigungsphase des ponderomotiven Potentials und es übertragen.
- Das Verhalten läßt sich gut im Phasenraum ($\hat{P}, \Delta\psi$) betrachten. $\Delta \psi = \psi + \psi_0$ ist die Phase relativ zur Phase ψ_0 des ponderomotiven Potentials. •

Freie Elektronen Laser

er Sättigungsbereich

FEL – Phasenraum

Röntgenphysik

•

er Sättigungsbereich

FEL – Phasenraum

- **(1)** Unmodulierter Strahl am Eingang des Undulators ($\hat{z} = 0$)
- 2 Verteilung im linearen Bereich ($\hat{z} = 4$)
- S Kurz vor dem Sättigungsbereich ($\hat{z} = 7$)
- Sättigung ($\hat{z} = 8.4$)

Der SASE Prozess	 Bis jetzt wurde immer nur der Fall eines Verstärkers betrachtet, bei dem ein externes Feld E_{ext} eingekoppelt und dieses dann im Undulator bis zur Sättigung verstärkt wird. Woher erhalten wir aber ein geeignetes, externes Feld ? 	 Das Feld kann in dem Undulator selbst in Form von spontan emitierter Synchrotronstrahlung erzeugt werden. Ein FEL Verstärker, der in diesem Modus betrieben wird, wird als SASE FEL bezeichnet 	 Ursache der Synchrotronstrahlung sind Dichtefluktuationen im Elektronenstrahl, die durch das Shot Noise (Schrotrauschen) beschrieben werden. 	 Beschreibung der Statistik des Elektronenstrahls 	Röntgenphysik 249
------------------	--	--	--	--	-------------------

chrotrauschen des Elektronenstrahls	• Der Elektronenstrahl besteht aus einer großen Zahl <i>N</i> von Elektronen und kann durch $I(t) = -e \sum_{k=1}^{N} \delta(t - t_k)$	beschrieben werden. t_k ist die zufällige Ankunftszeit eines Elektrons <i>e</i> am Undulatoreingang. Die Mittlere Verteilung entspricht dem Elektronenbunchprofil und ist durch $\langle I(t) \rangle = -e \cdot N \cdot F(t)$	gegeben. Für ein Gaussprofil wäre $F(t) = \frac{1}{\sqrt{2\pi}\sigma_T} \exp\left(-\frac{t^2}{2\sigma_T^2}\right)$	Röntgenphysik 250	
-------------------------------------	--	--	---	-------------------	--

				5 C	251
der Zeit $t, t + dt$ am	e ^{iwt} k	$e \sum_{k=1}^{N} \delta(t-t_k)$	lls die Summe einer m zufälligen Wert	山 ▲ 山 ▼ ▲ 山 ▼ ▲ □	
Die Wahrscheinlichkeit, daß ein Elektron in Undulatoreingang ankommt ist genau <i>F(t)</i> Wir definieren die Fouriertransformierte	$\overline{I}(\omega) = \int_{-\infty}^{\infty} I(t) e^{i\omega t} dt = -e \sum_{k=1}^{N} e^{i\omega t} dt$	$I(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{I}(\omega) e^{-i\omega t} d\omega = -$	Die Fouriertransformierte $ar{I}(\omega)$ kann somit a großen Zahl von komplexen Phasen mit der $\phi_k=\omega t_k$ beschrieben werden.		Röntgenphysik

0

Schrotrauschen des Elektronenstrahls

0

•

Freie Elektronen Laser SASE

SASE
Laser
ktronen
eie Elel
1T

Schrotrauschen des Elektronenstrahls

• Sei nun die Dauer des Elektronbunches σ_T so lang, das

$$\omega \cdot \sigma_{\mathcal{T}} \gg 1$$

- ist. Dann können die Phasen als gleichmäßig über das Intervall $(0, 2\pi)$ verteilt betrachtet werden.
- werden und das bedeutet, daß der Real und der Imaginäranteil In diesem Fall kann der Zentrale Grenzwertsatz angewandt von $I(\omega)$ normalverteilt sind. •

$$p(\operatorname{Re}\overline{I}(\omega)) = \frac{1}{\langle \operatorname{Re}\overline{I}(\omega) \rangle} \exp\left(-\frac{\operatorname{Re}\overline{I}(\omega)^2}{\langle \operatorname{Re}\overline{I}(\omega) \rangle}\right)$$

SASE
Laser
ektronen
e Ele
Frei

Korrelationsfunktionen

• Die Wahrscheinlichkeitsdichte der Verteilung $|\overline{I}(\omega)|^2$ hat damit die Form

$$\mathfrak{d}(|\overline{l}(\omega)|^2) = rac{1}{\langle |\overline{l}(\omega)|^2
angle} \exp\left(-rac{|l(\omega)|^2}{\langle |\overline{l}(\omega)|^2
angle}
ight)$$

einer negativen Exponentialfunktion.

Spektrale Korrelationsfunktion 1. Ordnung

$$\begin{split} \langle \overline{l}(\omega)\overline{l^*}(\omega')\rangle &= e^2 \left\langle \sum_{k=1}^N \sum_{n=1}^N \exp(i\omega t_k - i\omega' t_n) \right\rangle \\ &= e^2 \left\langle \sum_{k=1}^N \exp(i(\omega - \omega')t_k \right\rangle \ + \ e^2 \sum_{k\neq n} \langle \exp i\omega t_k \rangle \langle \exp i\omega' t_n \rangle \end{split}$$

S S S

jliji

▲ ||||| ▼ ▲ |||||

•

SASE
Laser
ktronen
eie Ele
Ĕ

Korrelationsfunktionen

Es ist

$$< \exp i\omega t_k> = \int_{-\infty}^{\infty} F(t_k) \exp(i\omega t_k) dt_k = ar{F}(\omega) = \exp\left(-rac{\omega^2 \sigma_T^2}{2}
ight)$$

die Fouriertransformierte des Gaussprofils F(t)

Damit ist dann

$$=e^2Nar{F}(\omega-\omega')+e^2N(N-1)ar{F}(\omega)ar{F}^*(\omega')$$

Wenn

$$N|ar{F}(\omega)|^2\ll 1,$$

dann ist der zweite Term vernachlässigbar und es ist

$$< \overline{l}(\omega)\overline{l}^*(\omega') >= e^2 N\overline{F}(\omega - \omega').$$

<u>ili</u>li Damit trägt nur der Teil bei, der das Schrotrauschen *e²N* • <u>I</u>III -beschreibt.

254

S S S

jliji

Korrelationsfunktionen

Die obige Bedingung ist i.A. erfüllt. Es war vorausgesetzt, daß

$$\omega\sigma_{T}\gg 1$$

 $\omega\sigma_{T}=10 \Rightarrow \exp(-100)\cong 10^{-44}$

N (Zahl der Elektronen im Bunch) ist typisch im Bereich von 10¹¹

$$\Rightarrow N \cdot |ar{F}(\omega)|^2 \ll 1$$

Freie Elektronen Laser SASE	mensionale Theorie des SASE FEL	m linearen Bereich werden alle Frequenzen unabhängig oneinander verstärkt. Deshalb zerlegen wir das Eingangssignal n seine Fourierkomponenten und berechnen für jede Harmonische die Verstärkung. Das Laserfeld wird durch	$ar{E}(\omega,z)= ilde{E}(\omega,z)\exp(i\omega(z/c)-t)+C.C.$	beschrieben. Die Verknüpfung zwischen der Zeit und Frequenzdomäne ist lurch $E(z,t) = \frac{1}{2\pi} \int_{\infty}^{\infty} \bar{E}(\omega,z) \exp(-i\omega t) d\omega$	Jegeben.	Röntgenphysik 257
	1-Dimen	 Im line vonein vonein in sein Harmo Das Lá 		beschiDie Vedurch	gegeb	

tronenbunch mit der Dauer <i>T</i> , so $v_0 T \gg 1$.	Annahme können Randeffekte	258
	bunch mit der Dauer <i>T</i> , so I.	bunch mit der Dauer T , so

SASE
ı Laser
ektronen
Freie El

- Ursache der Slippage sind die unterschiedlichen Geschwindigkeiten der FEL Strahlung und des Elektronenbunches in z-Richtung
- Es soll nun aus dem Elektroneneingangsstrom *l*(*t*) bzw. $\overline{l}(\omega)$ das Fourierkomponenten sind über eine Green'sche Funktion $\mathcal{G}(\omega, z)$ elektrische Feld E(z, t) bzw. $\overline{E}(\omega, z)$ berechnet werden. Die gekoppelt. •

$$ar{\mathsf{E}}(\omega, \mathsf{z}) = \mathcal{G}(\omega, \mathsf{z}) \overline{I}(\omega)$$

Für $\omega < 0$ ist

$$ar{\mathsf{F}}^*(\omega, z) = ar{E}(-\omega, z)$$

1-Dimensionale Theorie des SASE FEL	• Wir betrachten den Fall eines vernachlässigbaren Raumladungsfeld $\hat{\Lambda}_{\rho}^2 \rightarrow 0$ und einer scharfen Geschwindigkeitsverteilung des Elektronenstrahls $\hat{\Lambda}_{7}^2 = 0$. Im linearen Bereich sind die Propagationskonstanten $\hat{\Lambda}$ durch die Lösungen von $\hat{\Lambda}(\hat{\Lambda} + i\hat{C})^2 = i$ (41)	gegeben. • Wir betrachten nur die Lösung, die das exponentielle Wachsum beschreibt. In 0. Ordnung ($\hat{C} = 0$) war die Lösung $\hat{\lambda} = \frac{1}{2}(\sqrt{3} + i)$	• Durch Entwicklen der Lösungen von (41) um $\hat{C} = 0$ erhält man $\operatorname{Re}\hat{\Lambda} = \frac{\sqrt{3}}{2} \left(1 - \frac{\hat{C}^2}{9} \right)$ und $\operatorname{Im}\hat{\Lambda} = \frac{1}{2} \left(1 - \frac{4\hat{C}}{3} \right)$	Röntgenphysik 260
-------------------------------------	--	---	---	-------------------

Freie Elektronen Laser SASE

1-Dimensionale Theorie des SASE FEL

Damit ist die Green'sche Funktion dann durch

$$\mathcal{G}(\omega, z) = \frac{2}{3} \exp(i\frac{\omega}{c}z) \exp\left[\frac{\sqrt{3}}{2} \left(1 - \frac{\hat{C}^2}{9}\right)\hat{z} + \frac{i}{2} \left(1 - \frac{4\hat{C}}{3}\right)\hat{z}\right] \frac{E_0}{h_0}$$

gegeben. Einsetzen liefert sofort das gewünschte Ergebnis.

- Aus der Green'schen Funktion folgt, daß der SASE FEL im linearen Bereich nur ein schmales Frequenzband um die Resonanzfrequenz ω_0 verstärkt.
 - Mit

$$\dot{C} = (\omega - \omega_0)/(2\rho\omega_0)$$

berechnet sich die Bandbreite $\Delta\omega$ zu

$$egin{array}{rcl} \omega & = & \omega - \omega_0 = 2
ho\omega_0 \hat{C} \ & \cong &
ho\omega_0 \hat{C} \cong
ho\omega_0 \end{array}$$

ଚ ଚ ଚ Das Spektrum eines einzelnen, die Dauer T besitzenden Bunches أرال jii ji sollte Spikes mit einer typischen Breite 1/T besitzen

Röntgenphysik

Zahl der Spikes (Wellenpakete) sollte dann ungefähr

$$rac{\Delta \omega}{1/T} \cong
ho \omega_0$$

betragen.

- Die typischen Dauer eines Spikes sollte dann $1/(
 ho\omega_0)$ sein. •
- Wie sieht nun das Spektrum hinter dem Undulator aus ? •
- Wie groß ist jetzt die Leistung am Ausgang des FEL ? •

		- - - -			263
	SE FEL	it nur 1000 Elektro	Eingang des FEL		
Elektronen Laser SASE	eorie des SAS	ktronenbunches m	ator mit Stal am		ysik
Freie	nensionale Th	imulation eins Elek	nach dem Undula	-2 Detuning parameter C	Röntgenpt
	1-Din	یں - ا	Feld r 2 = 10	الE(m) ج	

Die Leistung ist durch den Pointing Vektor gegeben

$$V = \frac{cS}{4\pi} \int_{0}^{T} E^{2}(t) dt$$

= $\frac{cS}{4\pi} \int_{0}^{T} \frac{1}{2\pi} \int_{-\infty}^{\infty} |\bar{E}(\omega, z) \exp(-i\omega t)|^{2} d\omega dt$
= $\frac{cS}{8\pi} \int_{-\infty}^{\infty} |\bar{E}(\omega, z)|^{2} d\omega \cdot \int_{0}^{T} |\exp(-i\omega t)|^{2} dt$
= $\frac{cS}{8\pi} 2 \cdot \int_{0}^{\infty} |\bar{E}(\omega, z)|^{2} d\omega$
= $\frac{cS}{4\pi} \int_{0}^{\infty} |\bar{E}(\omega, z)|^{2} d\omega$

S ist die transversale Ausdehnung des Elektronenstrahl

S S S

<u>I</u>III

▲ |II|I ▼

▲ |||||

264

Röntgenphysik

	(42)					S S	265
1-Dimensionale Theorie des SASE FEL	• Die Leistung, gemittelt über viele Elektronenbunche ist durch $< \mathcal{E} >= rac{cS}{4\pi} \int_{-\infty}^{\infty} < \bar{E}(\omega,z) ^2 > d\omega$	gegeben.	$< ar{E}(\omega,z) ^2> = < \mathcal{G}(\omega,z)ar{I}(\omega) ^2> = < \mathcal{G}(\omega,z) ^2>< ar{I}(\omega) ^2>$	• Von der Green'schen funktion $\mathcal{G}(\omega,z)$ liefert nur der Realteil	$\exp\left[\frac{\sqrt{3}}{2}\left(1-\frac{\hat{C}^2}{9}\right)\hat{z}\right]^2 = \exp(\sqrt{3}\hat{z})\cdot \exp\left[\sqrt{3}\frac{\hat{C}^2}{9}\hat{z}\right]$	einen Beitrag.	Röntgenphysik

Freie Elektronen Laser SASE

1-Dimensionale Theorie des SASE FEL

Da

$$\hat{m{C}}=(\omega-\omega_0)/(2
ho\omega_0)$$
läßt sich < $|ar{m{E}}(\omega,z)|^2$ > schreiben als

$$<|ar{E}(\omega,z)|^2>=A\exp\left[-rac{(\omega-\omega_0)^2}{2\sigma_A^2}
ight]<|ar{I}(\omega)|^2>$$

mit

$$=\frac{4}{9}\left(\frac{E_0}{h_0}\right)^2\exp(\sqrt{3}\hat{z}) \text{ und } \sigma_A=3\sqrt{\frac{2}{\sqrt{3}}}\frac{\rho\omega_0}{\sqrt{\hat{z}}}$$

P

• Integration von $<|ar{E}(\omega,z)|^2>$ liefert dann

$$< W_{\text{out}} > = \rho W_b \frac{\sqrt{4\pi}\rho}{3\sqrt{\sqrt{3}}\hat{2}N_\lambda} \exp{\sqrt{3}\hat{2}}$$

S S mit der Elektronenstrahlleistung $W_b=\gamma mc^2 I_J e$ und der Zahl der jiiji <u>jiiji</u> • Elektronen pro Frequenzintervall N $_{\lambda}=2\pi I_{0}/(e\omega_{0})$

Röntgenphysik

	hlung	SE FEL Strahlung lung $ \bar{E}(\omega, z) $ ist durch egeben und somit gleich	$\left(rac{ ar{E}(\omega,z) ^2}{< ar{E}(\omega,z) ^2>} ight).$	chromator verwendet	or wird durch eine n. Das Laserfeld ergibt)	(m)	mator ist die gemessene Jentsprechend wird die	mator der negativen	 ○< ○ ○<th>267</th>	267
Freie Elektronen Laser SASE	Eigenschaften der SASE-FEL Stral	• Es sollen jetzt die Eigenschaften der SAS diskutiert werden. Die Statistik der Strahl die Statistik des Elektronenstrahls $\overline{I}(\omega)$ ge	$p(ar{E}(\omega,z) ^2) = rac{1}{< ar{E}(\omega,z) ^2>} \exp \Big($	 Zur Analyse der Strahlung wird ein Mono 	 Der Monochromator hinter dem Undulato Transmissionsfunktion <i>G_M(w)</i> beschriebe 	sich dann aus	$E(\omega) = \mathcal{G}_{\mathcal{M}}(\omega)\mathcal{G}(\omega, z)$	• Hinter einem schmalbandigen Monochron Intensität proportional zu $ \bar{E}(\omega) $ und dem	Intensitätverteilung hinter dem Monochro	Exponentialfunktion entsprechen.	Röntgenphysik

	E FEL	on vollständig chaotischer	on berechnet werden		$ar{ar{E}^*(\omega')>} ar{ ar{E}(\omega') ^2>]^{1/2}}$		$ar{F}(\omega-\omega')$	nbunch $E(z, t)$ einen	ぐりぐ 戸 ▲戸▼▲戸▼▲□▼	268
Freie Elektronen Laser SASE	1-Dimensionale Theorie des SAS	 Diese Verteilung ist eine Eigenschaft voll 	 polarisierter Strahlung Es soll zunächst die spektrale Korrelati 	 1. Ordnung 	$g_1(\omega,\omega')=rac{<}$	Wir hatten gezeigt, daß	$< \overline{l}(\omega)\overline{l}^*(\omega') >= e^2 N$	ist. Nehmen wir jetzt für den Elektroner Rechteckeckpuls der Zeit <i>T</i> an.		Röntgenphysik

 Die Fouriertransformierte einer Recheckfunktion ist eine Sinc Function $\sin(\omega)/\omega$. Damit kann man schreiben

$$g_1(\omega,\omega') = ar{F}(\omega-\omega_0) = \left[rac{(\omega-\omega')T}{2}
ight]^{-1} \sin\left[rac{(\omega-\omega')T}{2}
ight]$$

Wir definieren die spektrale Kohärenz

$$\Delta \omega_{m{c}} = \int_{-\infty}^{\infty} |g_1(\omega,\omega')|^2 d(\omega-\omega')$$

Für einen Rechteckbunch ist dies gleich •

$$\Delta \omega_{c} = rac{2\pi}{7}$$

SASE	
Laser	
ktronen	
reie Elel	

• 2. Ordnung

$$\begin{array}{lcl} \mathfrak{P}_{2}(\omega,\omega') &=& \displaystyle \frac{<|\bar{E}(\omega)|^{2}|\bar{E}(\omega')|^{2}>}{\left[<|\bar{E}(\omega)|^{2}><|\bar{E}(\omega')|^{2}>\right]}\\ &=& 1+|g_{1}(\omega,\omega')|^{2} \end{array}$$

Die mittlere Energie hinter dem Monochromator ist nun durch •

$$<\mathcal{E}>=\frac{cS}{4\pi}\int_0^\infty |\bar{E}(\omega,z)|^2d\omega=\frac{ce^2SN}{4\pi}\int_0^\infty |\mathcal{G}_M(\omega)|^2|\mathcal{G}(\omega,z)|^2d\omega$$

gegeben.

Die mittlere Energie hängt also von dem Verstärkungsprofil des FEL und der Apparatefunktion des Monochromators ab. •

SASE
Laser
ktronen
eie Elel

Definition der normierten Dispersion

$$\begin{split} \sigma_{\mathcal{E}}^{2} &= \frac{<(\mathcal{E} - <\mathcal{E} >)^{2} >}{<\mathcal{E} >} \\ &= \frac{<\mathcal{E} >}{\int_{0}^{\infty} d\omega \int_{0}^{\infty} d\omega' < |\bar{E}(\omega)|^{2} |\bar{E}(\omega')|^{2} >} \\ &= \frac{\int_{0}^{\infty} d\omega \int_{0}^{\infty} d\omega' < |\bar{E}(\omega)|^{2} > d\omega \cdot \int_{0}^{\infty} < |\bar{E}(\omega')|^{2} > d\omega' \\ &\int_{0}^{\infty} d\omega \int_{0}^{\infty} d\omega' < |\bar{E}(\omega)|^{2} > d\omega \cdot \int_{0}^{\infty} < |\bar{E}(\omega')|^{2} > |g_{1}(\omega, \omega')|^{2} \\ &= \frac{\int_{0}^{\infty} < |\bar{E}(\omega)|^{2} > d\omega \cdot \int_{0}^{\infty} < |\bar{E}(\omega)|^{2} > d\omega \cdot \int_{0}^{\infty} < |\bar{E}(\omega')|^{2} > d\omega' \end{split}$$

- Hier geht zusätzlich noch das Profil des Elektronenbunches ein
- Für die Apparatefunktion des Monochromators nehmen wir jetzt ein Gaussprofil an 0

$$\left|\mathcal{G}_{\mathcal{M}}\right|^{2}=\exp\left[rac{-(\omega-\omega_{0})^{2}}{2\sigma_{\mathcal{M}}^{2}}
ight]$$

Röntgenphysik

Die normierte Dispersion ist dann durch

$$\sigma_{\mathcal{E}}^{2} = \frac{\sqrt{\pi}}{\hat{\sigma}^{2}} \int_{0}^{\hat{\sigma}} \operatorname{erf}(x) dx \text{ mit } \hat{\sigma} = \frac{\hat{\sigma}_{A} \hat{\sigma}_{M}}{\sqrt{\hat{\sigma}_{A}^{2} + \hat{\sigma}_{M}^{2}}}, \hat{\sigma}_{x} = \sigma_{x} \cdot T$$

gegeben.

Asymptotisch ergibt sich

$$\sigma_{\mathcal{E}}^{2} \cong 1 \quad \text{für} \quad \sigma_{M} \cdot T \ll 1$$
$$\sigma_{\mathcal{E}}^{2} \cong \frac{\pi}{\sigma_{M} \cdot T} \quad \text{für} \quad 1 \ll \sigma_{M} \cdot T \ll \sigma_{A} \cdot \overline{1}$$
$$\sigma_{\mathcal{E}}^{2} \cong \frac{\sqrt{\pi}}{\sigma_{A} \cdot T} \quad \text{für} \quad \sigma_{A} \cdot T \ll \sigma_{M} \cdot T$$

Röntgenphysik

SASE

Freie Elektronen Laser

		(43)			Für die ner ng (43).	274
	irotrauschen des nit durch die		etrachtet werden	$_{k}\Delta t=\frac{T}{m}\sum_{k=1}^{m}l_{k},$	mme genähert wird. olarisierter, thermisch sind gilt nun Gleichu	
SASE	las Sch t. I ist dar	$\frac{1}{\omega i - i}$	ısität b		eine Su k von p nängig	
Freie Elektronen Laser Statistische Optik	 Berechnung wurde ebend für d Elektronenstrahls durchgeführt Die Charakteristische Funktion Fouriertransformierte 	$M_l(\omega) =$	gegeben.Es soll nun die integrierte Inter	$W = \int_{-T/2}^{T/2} I(t) dt$	wobei das Integral hier durch e Intensität <i>I_k</i> in jedem Intervall <i>k</i> Strahlung, die statistisch unabh	Röntgenphysik

<u>×</u>
'SI
~
َ ک
\sim
\mathbf{O}
a b
Φ
D
_
:0
\sim
ш

S S jiiji jii ji ▲ ||||| •

275

Literatur: J.W. Goodman, Statistical Optics, John Wiley & Sons (1985)

$$p_{W}(W) \cong \left(\frac{m}{\langle l \rangle T}\right)^{m} \frac{W^{m-1} \exp\left(-m \frac{W}{\langle l \rangle T}\right)}{\Gamma(m)}$$
(44)

 $\overline{}$

Damit ist die Charakteristische Funktion
$$M_W(\omega)$$
 durch

SASE

Freie Elektronen Laser

Statistische Optik

$$M_W(\omega) \cong \left[1 - i\omega \frac{< l > T}{m}\right]^{-m}$$

gegeben.

Die Wahrscheinlichkeitsdichefunktion ist dann die

Fouriertransformation

1-Dimensionale Theorie des SASE FEL	 Wir m	• Dies entspricht der Integration uber die Dauer 7 des Bunches, so daß wir Gleichung (44) anwenden. $p(\mathcal{E}) = \frac{M^M}{\Gamma(M)} \left(\frac{\mathcal{E}}{2\mathcal{E}}\right)^{M-1} \frac{1}{2\mathcal{E}} \exp\left(-M\frac{\mathcal{E}}{2\mathcal{E}}\right)$	$mit \qquad M = \frac{1}{\sigma_{\mathcal{E}}^2}$	 M ist die Zahl der Freiheitsheitsgrade (Moden) in dem Strahlungspuls.
-------------------------------------	--------------------------	--	---	---

276

Röntgenphysik

Freie Elektronen Laser SASE

1-Dimensionale Theorie des SASE FEL

Wahrscheinlichkeitsverteilung der Strahlung nach einem Monochromator •

Freie Elektronen Laser SASE

1-Dimensionale Theorie des SASE FEL

Ergebnis einer Simulation über 1000 FEL Pulse

1-Dimensionale Theorie des SASE FEL	 Was bedeuten nun diese Verteilungen ? Schmalbandiger Monochromator (σ_M · T ≪ 1 ⇔ M ≅ 1) Hinter dem Monochromator wird immer nur ein Spike (Wellenpaket) beobachtet. Ein Spike hat genau die Statistik einer negativen Exponentialfunktion. Hinter einem schmalbandigen Monochromator wird also Licht beobachtet, dessen Intensität sehr stark schwankt. Breitbandiger Monochromator Breitbandiger Monochromator wird also Licht beobachtet, dessen Intensität sehr stark schwankt. Breitbandiger Monochromator Wie viele Moden schwingen in dem SASE FEL an ? Abschätzung hatte ergeben Mie groß sind nun diese Zahlen z.B. bei FLASH ?
-------------------------------------	--

կկլ	
Im FEL schwingen also sehr viele Moden an!	Röntgenphysik
	 Im FEL schwingen also sehr viele Moden an!

		ibt sich aus der zfrequenzspektrums kurzen Spikes n Bereich von einigen <i>fs</i> liegen, ente sehr interessant ist. en gesamten Elektronenbunch zelnen Spike.	ぐくぐ ヨ ▲ ヨ ▲ □ ▲ □ ▲ □ ▲	281
SASE		L ergi quen; sehr l serime ch de r einz		
Freie Elektronen Laser	SASE FEL – Zeitstruktur	 Die Zeitstruktur des SASE FE Fouriertransformation des Fre Spektrum besteht aus vielen, Die Zeitdauer eines Spikes ka was für die zeitaufgelöste Exp Problem: Zeitauflösung ist dur gegeben und nicht durch eine 		Röntgenphysik

Take Home Message – SASE FEL

- Schrotrauschen des Elektronenstrahls und Bewegung im
 - Jndulator erzeugt spontane Synchrotronstrahlung Wechselwirkung der erzeugten Strahlung mit dem
- Elektronenbunch erzeugt eine Modulation des Elektronenstrahls (Microbunching)
- Höhere Teilchendichte und Kohärente Bewegung der Elektronen ührt zu einer Verstärkung der Strahlung
 - Vollständige Modulation führt zur Sättigung des FEL •

