

Teilchenbeschleuniger

- Linearbeschleuniger
- Zyklotron
- Mikrotron
- Synchroton
- Speicherringe

< □ > < □ > < □ > < □ >

Stanford Linear Accelerator Center SLAC

SQ (

王

< ∃ >

 Beschleunigung in einem Potential mit der Spannung U₀ ist nur bis zu einigen 10⁶ V möglich. Problem: Isolation, Überschläge

- Anwendung zur Extraktion von Teilchen
- Entwicklung von Linear Beschleunigern (Linear Accelerator, LINAC) für höhere Energien

- Entwicklung von Linear Beschleunigern (Linear Accelerator, LINAC)
- Aufbau eines einfachen LINAC

• Driftröhren, die mit den Polen eines Hochfrequenzsenders

$$U(t) = U_0 \sin \omega t$$

verbunden sind.

• Die Beschleunigung erfolgt immer im Spalt zwischen den Röhren

• Energie nach der *i*-ten Stufe

$$E_i = \frac{1}{2}mv_i^2$$

• Abstand zwischen dem *i*-ten und dem i + 1-ten Spalt

$$I_{i} = \frac{V_{i} \cdot \tau_{HF}}{2} = \frac{V_{i}}{2\nu_{HF}} = \frac{V_{i} \cdot \lambda_{HF}}{2c} = \beta_{i} \frac{\lambda_{HF}}{2}$$

Zeit $\tau_{HF}/2$ wird benötigt, um eine Driftstrecke zu durchlaufen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(日)

- Feld U(t) muß umgepolt werden, wenn die Teilchen gerade in der Driftröhre sind – Faradaykäfig
- Teilchen erfahren in jeder Driftstrecke eine Beschleunigung

$U_0 \sin \phi_s$

 ϕ_s ist die Phase des Teilchens relativ zum Hochfrequenzfeld

• Erreichbare Gesamtenergie nach *k* Driftstrecken wird damit

$$E_k = kqU_0 \sin \phi_s$$

- Geschwindigkeit der Teilchen nimmt zu ⇒ Bei konstanter Frequenz muß die Länge der Driftstrecken größer werden
- Wenn $v \approx c$ bleibt v konstant und nur noch die Energie nimmt zu \Rightarrow Abstand kann konstant bleiben

Beschleuniger Linear Beschleuniger

- Moderne LINAC verwenden anstellen von Driftröhren Hohlleiterstrukturen
- Verwendung von supraleitenden Niob Modulen im ILC oder XFEL
- Felder >25MV/m sind damit möglich
- Einsatz von Linearbeschleunigern als erste Stufe in Speicherringen, z.B. bei der ALS in Berkeley, Californien
- Linearbeschleuniger können beliebig lang werden. Problem: Kosten!
- Lösung: Beschleunigung auf einer Kreisbahn

<ロ > < 同 > < 同 > < 三 > < 三 >

5 D D D

Zyklotron

- Prinzip wurde von E.O. Lawrence 1930 vorgeschlagen.
- Teilchen bewegen sich in einem homogenen Magnetfeld \vec{B}
- Umlauffrequenz (Zyklotronfrequenz)

$$\omega_{c} = \frac{e}{m}B_{z}$$

- ω_c ist unabhängig von der Teilchengeschwindigkeit v, solange die Teilchen nicht relativistisch behandelt werden können $(v/c \le 0.15)$
- Bei höheren Energien ändert sich die Masse m und die Frequenz des Hochfrequenzfeldes muß variiert werden.
- Beispiel für U = 10kV.

$$E_{kin} = e \cdot U = \frac{1}{2}m_e v_e^2 \Rightarrow v_e/c = 0.2!$$

 Elektronen müssen bereits bei 10 keV Energie relativistisch behandelt werden

500

Zyklotron Aufbau

Zyklotron

Zyklotron der Uni Bonn

Mikrotron

- Beschleunigung mittels eines Linearbeschleunigers
- Umlenkung wie im Zyklotron in einem Ablenkmagneten
- Ablenkradius *R* im Magnetfeld *B* für relativistische Teilchen

Lorentzkraft = Zentrifugalkraft

$$evB = m\frac{v^2}{R}$$

 $\Rightarrow R = \frac{mv}{eB} = \frac{vmc^2}{ec^2B} = \frac{v}{ec^2B}E$

- Beschleunigung muß so erfolgen, daß die Elektronen bei jedem Umlauf genau in Phase mit dem Hochfrequenzfeld sind
- Energien bis einige 100 MeV können erreicht werden.
- Einsatz zum Beispiel am Speicherring BESSY II als ersten Beschleuniger

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Mikrotron Prinzip

590

E.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > <

Kleines Mikrotron

Beschleuniger Kreisbeschleuniger

Großes Mikrotron

Synchrotron

• Für relativistische Teilchen mit $v \approx c$ gilt für den Bahnradius in einem Magnetfeld

$$R = rac{E}{ecB}$$

- Für E > 1 GeV und B = 5 T wächst der Radius R auf einige Meter an
- Technisch sehr aufwendig!
- Lösung:
 - Bewegung auf einer Teilchenbahn mit festem Radius *R*
 - Ablenkung in einzelnen, schmalen Ablenkmagneten
 - $E/B = \text{const.} \Rightarrow E$ und B müssen synchron hochgefahren werden
- \Rightarrow Synchrotron

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Beschleuniger Kreisbe

Kreisbeschleuniger

Aufbau eines Synchrotrons

590

Speicherringe

- Moderne Synchrotronstrahlungsquellen sind als Speicherringe ausgelegt.
- Synchrotron kann nicht bei E = 0 starten, da dann auch B = 0 gelten müsste. Entsprechende Magnete lassen sich nicht bauen.
 - LINAC oder Microtron als Vorbeschleuniger
 - Synchrotron um Elektronen auf die gewünschte Energie E zu beschleunigen
 - Speicherring, um die Elektronen auf der konstanten Ringenergie *E* zu halten.
- Im Speicherring wird den Teilchen die Energie wieder zugeführt, die sie bei einem Umlauf verlieren.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 回 ト < 巨 ト < 巨 ト 三 巨

Speicherringe

- Parameter eines typischen Speicherringes
 - Lebensdauer τ : einiger Stunden
 - Ringstrom *I*: 100-400 mA
 - *I* × τ : 1-4 Ah
- Abnahme des Ringstromes / durch Stöße mit dem Restgas
- \Rightarrow Ultra-Hochvakuum (UHV) Bedingungen: $10^{-9} 10^{-10}$ mbar Druck
 - Kein gleichmäßiger Strom, Elektronen treten in Bunchen auf.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Beschleuniger Kreisbeschleuniger

Aufbau eines modernen Speicherrings

590

Beschleuniger Kreisb

Kreisbeschleuniger

Speicherringe weltweit

www.lightsources.org

▲□▶▲□▶▲□▶▲□▶ □ 少々ぐ

Röntgenphysik

Geladene Teilchen in Magnetfeldern

Sollbahn

Wichtig ist die Bewegung im Speicherring, relativ zur Sollbahn s. Die Abweichungen von dieser Sollbahn in x und z Richtung kann mit einem handlichen Matrixformalismus beschrieben werden

Emittanz

 Eine wichtige Größe ist die Einhüllende E(s) einer Vielzahl von Trajektoren. Diese ist durch

$$E(s) = \sqrt{\epsilon eta(s)}$$

beschrieben.

 $\beta(s)$ Betafunktion oder Amplitudenfunktion

500

3

<ロト < 国 ト < 国 ト < 国 ト

Emittanz

Bahngleichung

Die Bahngleichung ist gegeben durch

$$oldsymbol{x}(oldsymbol{s}) = \sqrt{\epsiloneta(oldsymbol{s})} \cos(\Psi(oldsymbol{s}) + \phi) \quad ext{ mit } \quad \Psi(oldsymbol{s}) = \int_0^{oldsymbol{s}} rac{d\sigma}{eta(\sigma)}$$

- Die Abweichung x(s) wird durch eine Schwingung beschrieben (Betatronschwingung)
- Die Strahlführung muß so designed werden, daß nach einem oder mehreren Umläufen ein Elektron wieder in sich selber zurückgeführt wird !

SQ (

- 32

<ロ > < 同 > < 三 > < 三 > < □ > <

Typische Magnetstrukturen

Emittanz

- Die Emittanz ist über den gesamten Speicherring konstant.
- Emittanz entspricht bis auf einen Faktor π der Fläche A der Ellipse im Phasenraum (x, x').

$$\mathbf{A} = \pi \cdot \epsilon$$

Strahlquerschnitt

Die Elektronenverteilung im Strahl kann gut durch eine Gaussverteilung mit der Standardabweichung σ beschrieben werden.

$$\epsilon = \frac{\sigma^2(s)}{\beta(s)}$$

Die Emittanz ist zusammen mit der Betafunktion ein Maß für den Strahlquerschnitt im Speicherring.

Röntgenphysik

Typische Magnetstrukturen

FEL

Ein FEL zeichnet sich durch eine sehr kleine Emittanz des Elektronenstrahls aus

Magnetfelder

- Die gesamte Strahlführung in Synchrotrons erfolgt über magnetische Felder. Die wichtigsten Felder sind dabei
- Elektrische Felder können zur Ablenkung hochrelativistischer, geladener Strahlen nicht genutzt werden

 \sqrt{a}

3

日とくほとくほと

	Teilchen im Magnetfeld		
Multipol	Definition	Wirkung	
Dipol	$rac{1}{R}=rac{e}{p}B_{z0}$	Strahlablenkung	
Quadrupol	$k = rac{e}{p} rac{dB_z}{dx}$	Strahlfokusierung	
Sextupol	$m = \frac{e}{p} \frac{d^2 B_z}{dx^2}$	Kompensation Chromatizität	
Oktupol	$o = rac{e}{p} rac{d^3 B_z}{dx^3}$	Feldfehlerkompensation	
$\frac{1}{R(x,z,s)} =$	$=rac{e}{p}B_{Z}(x)=rac{1}{R}+k\cdot$	$x + \frac{1}{2!}m \cdot x^2 + \frac{1}{3!}o \cdot x^3 + \dots$	2 (~
	Röntgenphysik		82

Bahn Matrizen - Feldfreier Raum

Transformation durch eine Magnetstruktur

$$\vec{X}' = M \cdot \vec{X}, \qquad X = \begin{pmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{pmatrix}$$

Mehrfache Anwendung auf Anfangsvektor X_0 liefert die Teilchenbahn durch komplexe magnetische Strukturen.

Driftstrecke:

$$M_{Drift} = \begin{pmatrix} 1 & s & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & s \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

horizontal fokusierender Quadrupol k < 0

$$M_{QF} = \begin{pmatrix} \cos \Omega & \frac{1}{\sqrt{|k|}} \sin \Omega & 0 & 0 \\ -\sqrt{|k|} \sin \Omega & \cos \Omega & 0 & 0 \\ 0 & 0 & \cosh \Omega & \frac{1}{\sqrt{|k|}} \sinh \Omega \\ 0 & 0 & -\sqrt{|k|} \sinh \Omega & \cosh \Omega \end{pmatrix}$$
$$\Omega = \sqrt{|k|}s$$

vertikal fokusierender Quadrupol k > 0

$$M_{QF} = \begin{pmatrix} \cosh \Omega & \frac{1}{\sqrt{k}} \sinh \Omega & 0 & 0\\ \sqrt{k} \sinh \Omega & \cosh \Omega & 0 & 0\\ 0 & 0 & \cos \Omega & \frac{1}{\sqrt{k}} \sin \Omega\\ 0 & 0 & -\sqrt{k} \sin \Omega & \cos \Omega \end{pmatrix}$$

< <p>I

< A

Röntgenphysik

500

- ₹ € ►

 E

Dipolmagnet

$$M_{Dipol} = \begin{pmatrix} \cos \frac{s}{R} & R \sin \frac{s}{R} & 0 & 0 \\ -\frac{1}{R} \sin \frac{s}{R} & \cos \frac{s}{R} & 0 & 0 \\ 0 & 0 & 1 & s \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Teilchenbahnen

Q_n Quadrupolmagnet *D* Driftstrecke

1. Generation

Speicherringe, die für die Hochenergiephysik gebaut worden sind und dann parasitär für Experimente mit SR verwendet worden sind. Großer Elektronenstrahldurchmesser = Große Emittanz

2. Generation

Speicherringe, die dediziert zur Erzeugung von SR an Ablenkmagneten gebaut worden sind mittlere Emittanz

3. Generation

Speicherringe für Synchrotronstrahlung mit langen geraden Segmenten zum Einbau von Insertion Devices kleine Emittanz

4. Generation (?)

Freier Elektronen Laser (FEL) Hier ist die Zuordnung etwas umstritten, da FEL's Quellen mit vollkommen neuen Eigenschaften sind.

Take Home Message – Beschleuniger

- Teilchenbeschleidniger werden als Linear- und Kreisbeschleuniger realisiert
- Elektronen erreichen einfach relativistische Geschwindigkeiten
- Moderne Ringbeschleuniger basieren auf dem Prinzip des Synchrotrons
- Nutzung von Magnetstrukturen um die Teilchen auf der Kreisbahn zu halten
- Dedizierte Synchrotronspeicherringe zur Produktion von Röntgenstrahlung
- Emittanz: Phasenraumvolumen des Strahls beschreibt die Qualität des Elektronenstrahls

500

- 《 圖 》 《 필 》 《 필 》 - " 필