Part II: Bulk metallic glasses

May 19th 2009

H. Franz

Hermann Franz | Master course mod. X-ray physics | May 2009 | Page 1

Glasses are materials with amorphous structure showing a gradual transition from the liquid to the solid without well defined melting point

Structure similar to the liquid

Mode coupling theory is describing the essentials of this transition

Bulk Metallic Glasses

Systems

- > Historically first alloy AuSi (1960) cooling with 10⁶ K/s
- > 1969 PdCuSi only 10³ K/s needed
- First commercial amorphous alloy, Vitreloy 1 (41.2% Zr, 13.8% Ti, 12.5% Cu, 10% Ni, 22.5% Be)
- > Families of alloys
 - Pd based: PdCuNiP
 - Zr based: ZrNi, ZrTiCuNiBe (v4), ZrAlNiCuAg, ZrPd, ZrAlCu, ZrAlCuNiFe
 - La based
 - Fe based: FePCAIBGa
 - Cu based: CuZr, CuTiZr
 - Al based: AlLaNi
 - Ni based: NiZr, NiNbY
 - and many more

Systems

1788

Q.K. Jiang et al. | Acta Materialia 56 (2008) 1785-1796

Table 1

The critical sizes (d_c) and thermal parameters for $Zr_{100-x-y}(Cu_zAg_{1-z})_yAl_x$ (x = 7-9 at.%, y = 42-50 at.% and z = 0.75-0.875) alloys, together with other BMGs reported in Refs. [20,27,28] for comparison

Alloys	Critical size	Amorphous ingots (25 g)	$T_{\rm g}$	T_x	T_{m}	T_1	ΔT_x	$T_{\rm rg}$	γ
Zr46Cu46Al8	5 mm	No	715	771	978	1163	56	0.615	0.411
Zr47(Cu4/5Ag1/5)46Al7	<20 mm	No	704	783	1055	1242	79	0.567	0.402
Zr47(Cu4 5/5.5Ag1/5.5)46Al7	<20 mm	Partial	702	782	1056	1123	80	0.625	0.428
Zr47(Cu5/6Ag1/6)46Al7	<20 mm	Partial	703	781	1060	1125	78	0.625	0.427
Zr47(Cu6/7Ag1/7)46Al7	20 mm	Partial	709	774	1057	1118	65	0.634	0.424
Zr45(Cu4/5Ag1/5)48Al7	20 mm	Partial	710	783	1062	1208	73	0.588	0.408
Zr45(Cu4.5/5.5Ag1/5.5)48Al7	>20 mm	Yes	711	785	1063	1154	74	0.616	0.421
Zr45(Cu5/6Ag1/6)48Al7	>20 mm	Yes	713	786	1061	1159	73	0.615	0.420
Zr43(Cu5/6Ag1/6)50Al7	20 mm	No	738	770	1075	1127	32	0.65	0.413
Zr50(Cu4/5Ag1/5)42Al8	20 mm	Partial	703	774	1089	1155	71	0.609	0.417
Zr50(Cu5/6Ag1/6)42Al8	<20 mm	Partial	701	764	1095	1138	63	0.616	0.415
Zr48(Cu3/4Ag1/4)44Al8	20 mm	Partial	706	770	1092	1218	64	0.580	0.400
Zr48(Cu4/5Ag1/5)44Al8	>20 mm	Yes	707	762	1090	1132	55	0.625	0.414
Zr48(Cu4.5/5.5Ag1/5.5)44Al8	>20 mm	Yes	706	777	1089	1129	71	0.625	0.423
Zr48(Cu5/6Ag1/6)44Al8	>20 mm	Yes	705	778	1090	1122	73	0.628	0.426
Zr48(Cu6/7Ag1/7)44Al8	>20 mm	Yes	706	778	1089	1127	72	0.626	0.424
Zr48(Cu7/8Ag1/8)44Al8	20 mm	Partial	707	779	1095	1127	72	0.627	0.425
Zr46(Cu4/5Ag1/5)46Al8	>20 mm	Yes	710	776	1091	1228	66	0.578	0.400
Zr46(Cu4.5/5.5Ag1/5.5)46Al8	>20 mm	Yes	703	775	1088	1126	72	0.624	0.424
Zr46(Cu4.5/5.5Ag1/5.5)46Al8 ingots	>20 mm	Yes	704	776	1089	1130	72	0.623	0.423
Zr46(Cu5/6Ag1/6)46Al8	>20 mm	Partial	710	778	1088	1120	68	0.634	0.425
Zr53(Cu5/6Ag1/6)38Al9	20 mm	Partial	711	767	1089	1129	56	0.63	0.417
Zr51 (Cu4.5/5.5 Ag1/5.5)40 Al9	20 mm	Partial	703	758	1092	1144	55	0.615	0.410
Zr49(Cu5/6Ag1/6)42Al9	20 mm	Partial	708	767	1092	1242	59	0.57	0.393
Cu43Zr43Al7Ag7 [27]	8 mm	-	722	794	1125	-	72	-	-
Zr41.2Ti13.8Cu12.5Ni10Be22.5 [28]	25 mm	-	623	672	932	996	49	0.67	0.415
Pd40Cu30Ni10P20 [28]	72 mm	-	575	670	804	840	95	0.72	0.473
La62Al14Cu11.3Ag2.7NisCo5 [20]	>20 mm	-	422	482	642	727	60	0.580	0.419
La65Al14Cu9.2Ag1 8NisCos [20]	35 mm	-	419	459	641	687	40	0.610	0.415

"Yes", "partial" and "no" are roughly defined by eyes for ingots having volume fractions of larger than about 80%, 30-80% and less than about 30% for the amorphous component, respectively.

Couple of empirical rules in literature

However up to now still empirical (trail and error) development

- Three or more alloy components
- Very different atomic radii
- Negative heat of mixing
- Low eutectic
- Competing crystalline phases

Structure vs. macroscopic properties

Transformers

low thermal losses

Light weight compounds in space crafts

high specific strength

Surface coating

very hard thin films

Magnetic properties

High strength

Sample preparation - melt spinning

Rather wide spread
Cooling rate up to 10⁵ K/s
Production of large quantities
However only thin films (couple of 10 μm)

Sample preparation - splat cooling

Rather wide spread Cooling rate up to 10⁶ K/s Production of small quantities Only thin disks (couple of 10 μm)

In-situ tensile experiments

Tensile/compression module

Zr_{64.13}Cu_{15.75}Ni_{10.12}Al₁₀

- [1] rear yoke, [2] front yoke, [3] clamping,
- [4] leading screws, [5] -load cell, [6] motor,
- [7] displacement gauge

Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Science **315**, 1385 2007.

Storage ring DORIS III

In-situ tensile experiments using high-energy XRD

BW5 is dedicated to X-ray scattering experiments using high-energy photons (**60 - 150 keV**).

The **large penetration depth** at these energies of typically **sereral mm to cm** allows the investigation of bulk materials and complex sample environments.

The experimental station is equipped with a triple axis diffractometer and an **image plate** camera.

Parameters:

- wavelength λ = 0.12398 Å (100 keV)
- crossection of collimated beam 1mm²
- exposure time 10 s
- XRD in transmission mode
- 2D ma345 image plate detector used in symetric mode

In-situ tensile experiments

Courtesy J. Bednarcik

Determination of deformation state by XRD

The symmetric circular diffraction pattern is characterized with respect to the polar coordinates (*s*, η). By dividing the η -range of 0 to 2π into 36 segments, one obtains symmetrized intensity distributions

$$I'_{i}(Q,\eta_{i}) = \int_{\eta_{i}-\pi/36}^{\eta_{i}+\pi/36} [I(Q,\eta) + I(Q,\eta+\pi)] d\eta$$

with i = 1...18, where the wave-vector transfer Q = Q(s) is defined by

$$Q(s) = \frac{4\pi}{\lambda} \sin\left(\frac{1}{2} \arctan\left(\frac{s}{D}\right)\right)$$

in which λ denotes the wavelength, D refers to the sample-to-detector distance and *s* represents the distance from the origin of the polar coordinate system.

The relative change of the position of the principal peak upon applying an external stress defines the strain

$$\varepsilon_i(\eta_i, \sigma) = \frac{q(\eta_i, 0) - q(\eta_i, \sigma)}{q(\eta_i, \sigma)}$$

H. F. Poulsen et al., Nat. Mater. 4 33-35 (2005)

Determination of tensor components

Analysis in reciprocal space

Stress-strain curves

La based metallic glass Only elastic strain !!!

Crystalline metal

Relaxation phenomena and glass transition

Figure 1: Detailed view showing infrared lamp furnace. Black tube sitting between two lamps supports capillary with the sample and serves as a heat condenser.

Relaxation phenomena and glass transition

