Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Vorlesung zum Haupt/Masterstudiengang Physik SS 2009 M. v. Zimmermann

<u>martin.v.zimmermann@desy.de</u> HASYLAB at DESY building 25b, room 222, phone 8998 2698

Methoden moderner Röntgenphysik Materials Science – I

Materials Science

7.5. Martin v. Zimmermann

- 12.5. Hermann Franz
- 14.5. Hermann Franz
- 19.5. Martin v. Zimmermann

correlated electron materials – structural properties glasses I glasses I correlated electron materials – magnetic properties

correlated electron materials: overview

- phase transitions
- structural phase transition of SrTiO3
- x-ray diffraction to investigate phase transitions
- structural aspects of transition metal oxides
- orbital and charge order in $La_{1-x}Ca_{x}MnO_{3}$
- resonant scattering to study orbital/charge order
- magnetic properties of transition metal oxides
- magnetic scattering
- resonant magnetic scattering

Phase transitions

examples:

- solid liquid gas
- structural phase transition (SrTiO₃)
- magnetic phase transition
- Mott-metal-insulator transition
- macroscopic quantum phenomena (superconductivity, suprafluidity)
- quantum phase transitions (at zero temperature, driven by pressure, magnetic field)
- glass transitions (amorphous solids, spin-glasses, quasi-crystals) (non-equilibrium states)

classification of phase transitions

Ehrenfest classification:

smoothness of the chemical potential μ First order if the entropy s = $-\partial \mu / \partial T$ is discontinuous at the transition.

Problem: derivatives of μ can diverge as a transition is approached.

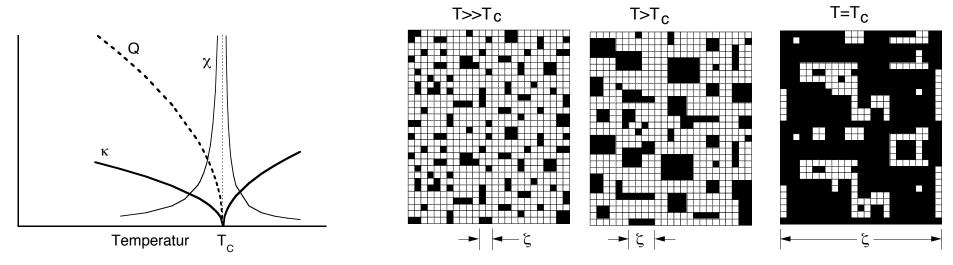
Modern classification:

Fist order transitions have non-zero latent heat. Are also called discontinuous.

All other transitions are continuous phase transitions.

structural phase transition of SrTiO₃

- phase transition breaking of symmetry
- stable structure at temperature T determined by minimum of the free energy $F = U T \cdot S$
- Orderparameter Q
 - Q=0 in the disordered phase
 - Q=I in the completely ordered phase
- Phase transition at temperature T_c
- \bullet For continuous phase transitions, ordered and disordered regions form at T_c with out energy cost critical fluctuations



Landau theory

phenomenological description of phase transitions

 $F(Q,T) = 1/2aQ^2 + 1/3bQ^3 + 1/4cQ^4 + \dots$

$$\left. \frac{\partial F}{\partial Q} \right|_{Q_o} = 0 \text{ und } \left. \frac{\partial^2 F}{\partial^2 Q} \right|_{Q_o} > 0$$

$$a > 0$$
 : $a = a'(T - T_c)$ $b=0$

$$F(Q,T) = 1/2a'(T-T_c)Q^2 + 1/4cQ^4$$

$$Q_o^2(T) = \begin{cases} 0 & \forall T > T_c \\ \frac{a'}{c}(T_c - T) & \forall T < T_c \end{cases}$$
$$\implies Q_o(T) \sim (T_c - T)^\beta \text{ mit } \beta = 0.5$$
$$\beta \text{ kritischer Exponent}$$

Suszeptibility - korrelation function

$$\mathcal{F} = \frac{\partial F}{\partial Q}\Big|_{T} \qquad \qquad \chi(T) = \frac{\partial Q}{\partial \mathcal{F}}\Big|_{\mathcal{F}=0}$$
$$\chi(T) = \begin{cases} \frac{1}{a'(T-T_{c})} & \forall T > T_{c} \\ \frac{1}{2a'(T_{c}-T)} & \forall T < T_{c} \end{cases}$$
$$\implies \chi(T) \sim |T_{c} - T|^{-\gamma} \quad \text{mit } \gamma = 1$$

 $G(\vec{x},T) = \langle Q(\vec{x},T)Q(0,T) \rangle - \langle Q(T) \rangle^{2} = k_{B}T\chi(\vec{x},T)$

$$\chi(\vec{q},T) = \int d\vec{x} \, \exp(-i\vec{q}\vec{x}) \, \chi(\vec{x},T) \sim \int d\vec{x} \, \exp(-i\vec{q}\vec{x}) \, G(\vec{x})$$

mit $G(\vec{x},T) \sim \frac{e^{-|\vec{x}|/\zeta}}{|\vec{x}|} \implies \chi(\vec{q},T) \sim \frac{1}{\kappa^2 + q^2}.$

Methoden moderner Röntgenphysik Materials Science - I

7.5.2009

Landau theory and beyond

- Landau theory is independent of the dimension of the system and dimension of the orderparameter, fails to describe fluctuations around T_c, good approximation for T \neq T_c
- Landau-Ginzburg theory takes position dependent fields into account and describes behavior around T_{c}
- Renormalizing Group theory most complete theory to describe phase transitions. Results in proper values for critical exponents and could predict the scaling laws, the relation between different critical exponents.
- Predicts also the universality hypothesis, that the behavior at a phase transition is given only by the dimension of the system and the dimension of the orderparameter, but not the specific interactions.

example: structural phase transition in SrTiO₃

perovskite structure: Pm3m (#221) lattice parameter a_c below 105 K: 14/mcm (#140) $a_t = \sqrt{2} a_c, c_t$

orderprameter: spontaneous strain

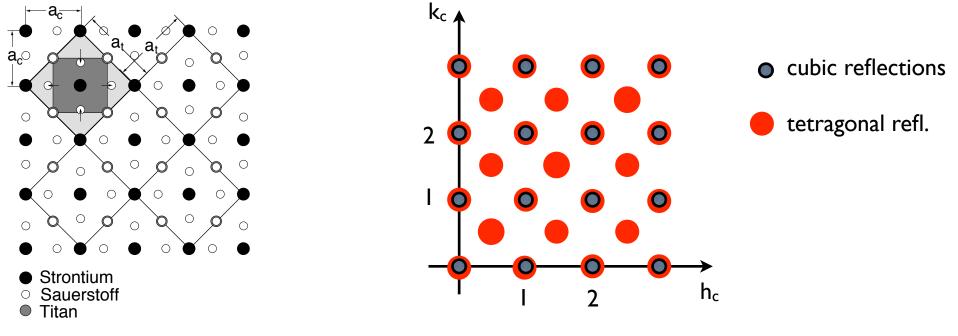
$$\varphi^2 = c_t(T)/a_0(T) - I$$

 $a_0(T) = 2/3 a(T) + 1/3 c(T)$

investigation of structural phase transitions by x-ray diffraction

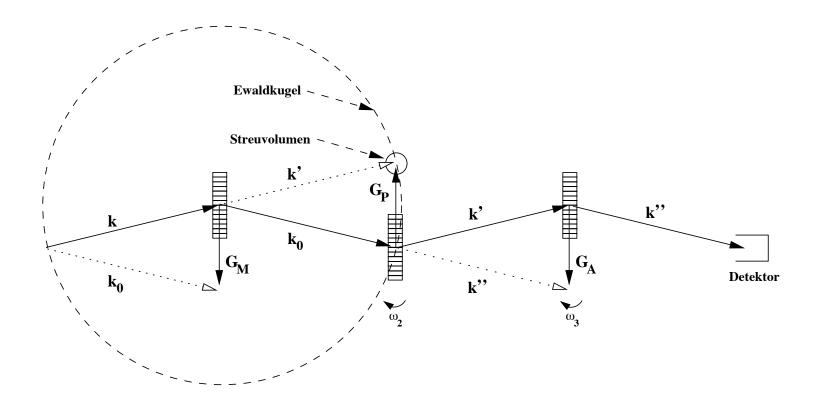
Ist approach: determination of lattice parameters

2nd approach: determinations of intensity of high-temperature phase "forbidden" reflections



Methoden moderner Röntgenphysik Materials Science - I

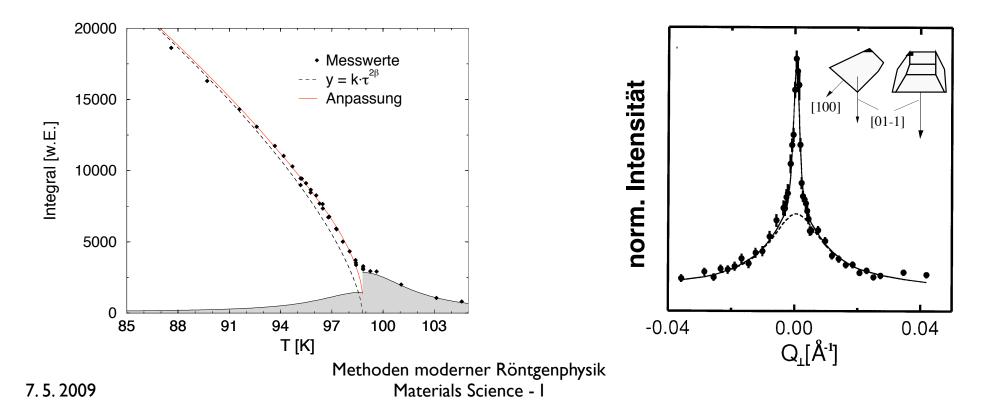
3-axis diffractometer



diffractometer

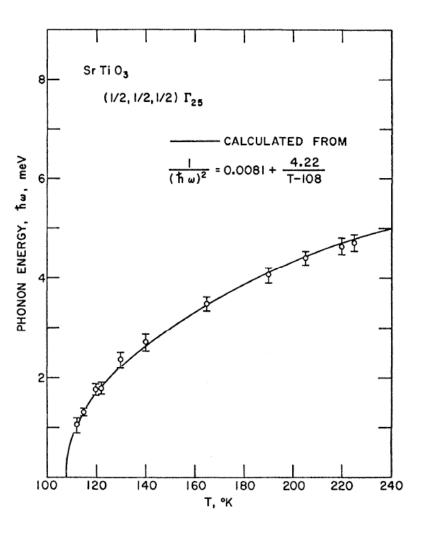
investigation of structural phase transitions by x-ray diffraction

$$I_{Bragg} \sim |F_{hkl}|^2 \sim Q_o^2 \sim (T_c - T)^{2\beta}$$
$$I_{Fl}(\vec{q}, T) \sim \chi(\vec{q}, T) \sim \frac{1}{\kappa^2 + q^2}$$



soft mode transition

phonon energy: inelastic neutron scattering



static lattice distortion: x-ray diffraction

Methoden moderner Röntgenphysik Materials Science - I

correlated electron materials: transition metal oxides

- physical properties determined by interplay of charge, orbital, spin and lattice degrees of freedom
- high Tc superconductivity
- colossal magnetoresistance
- multiferroic behavior

H	¹ Periodic Table of the Elements															2 He	
Li 3	Be	-	 hydrogen alkali metals alkali earth metals 					 poor metals nonmetals noble gases 					C 6	N 7	08	۶ F	10 Ne
11 Na	12 Mg	-	 artification metals transition metals 					 none gases rare earth metals 					14 Si	15 P	16 S	17 Cl	18 Ar
19 K	Ca ²⁰	21 Sc	22 Ti	V ²³	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 <mark>Sr</mark>	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	Te Te	53 	Xe Xe
CS CS	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	⁸⁸ Ra	89 Ac	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno										
			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			90 Th	91 Pa	92 U				96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

correlated electron materials: transition metal oxides

3d electronic Eigenstates: $R_n * Y_m^2(\Theta, \varphi)$ quantum numbers: n=3 (radial) l =2 (angular momentum) m= -2 ... +2 magentic 5-fold

5-fold degenerate

in a cubic crystal field: e.g. LaMnO3

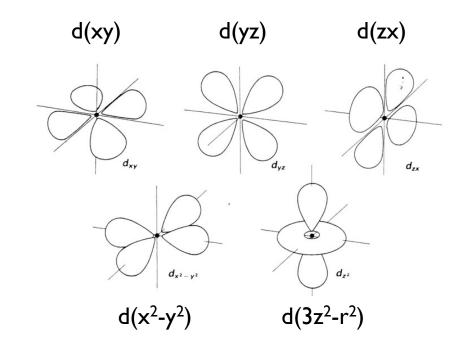
 $V(r) = \sum Z_i e^2 / |\mathbf{r} - \mathbf{R}_i|$ Madelung Potential

in rectangular coordinates: $V_4(\mathbf{r}) = 5/2 V_{40} (x^4 + y^4 + z^4 - 3/5r^4)$ perovskite structure

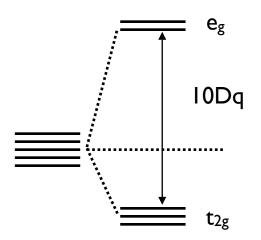
cubic crystal field

Eigenstates in cubic crystal field:

 $\begin{array}{ll} d(x^2-y^2) &\propto \sqrt{2\pi/5} \, (\Upsilon_2{}^2+\Upsilon_2{}^{-2}) &= 1/2\sqrt{3} \, (x^2-y^2)/r^2 \\ d(3z^2-r^2) &\propto \sqrt{4\pi/5} \, \Upsilon_2{}^0 &= 1/2 \, (3z^2-r^2)/r^2 \\ d(xy) &\propto 1/i \, \sqrt{2\pi/5} \, (\Upsilon_2{}^2-\Upsilon_2{}^{-2}) &= \sqrt{3} \, (xy)/r^2 \\ d(yz) &\propto \sqrt{2\pi/5} \, (\Upsilon_2{}^{-1}+\Upsilon_2{}^1) &= \sqrt{3} \, (yz)/r^2 \\ d(zx) &\propto 1/i \, \sqrt{2\pi/5} \, (\Upsilon_2{}^{-1}-\Upsilon_2{}^1) &= \sqrt{3} \, (zx)/r^2 \end{array}$



crystal field splitting:



Hund's rules

electrons occupy orbitals such that the gound state is characterized by:

- I. the maximum value of the total spin S allowed by the exclusion principle
- 2. the maximum value of orbital angular momentum L consistent with S
- 3. Spin-orbit interaction:

J = |L + S| for more that half filled shell

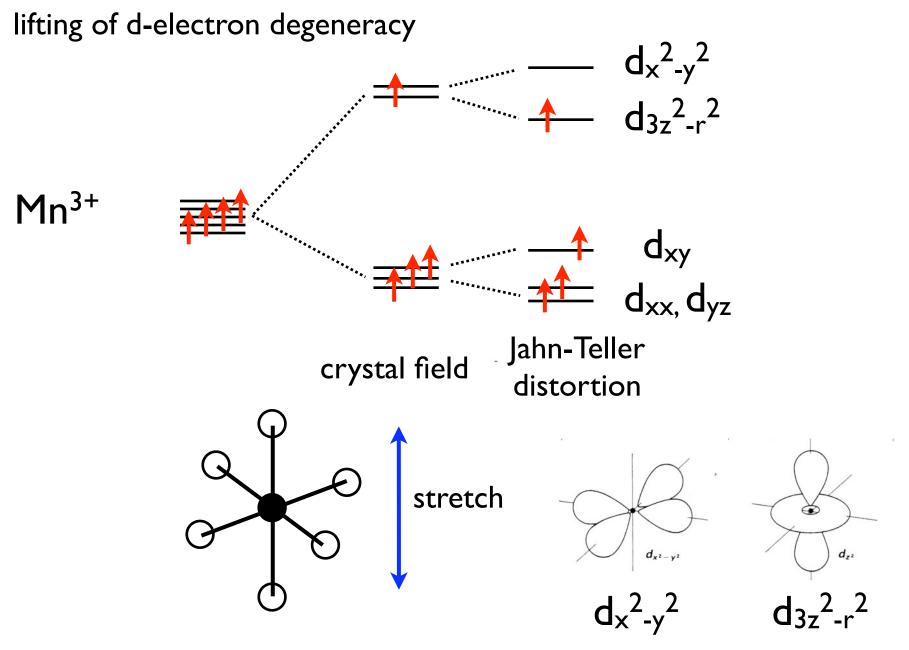
J = |L - S| for less than half filled shell

Mn3+: [Ar]
$$3d^4$$

Mn3+: [Ar] $3d^4$
 $1 = 0 (|2-2|)$
 $1 = 0 (|2-2|)$
 $1 = 0 (|2-2|)$

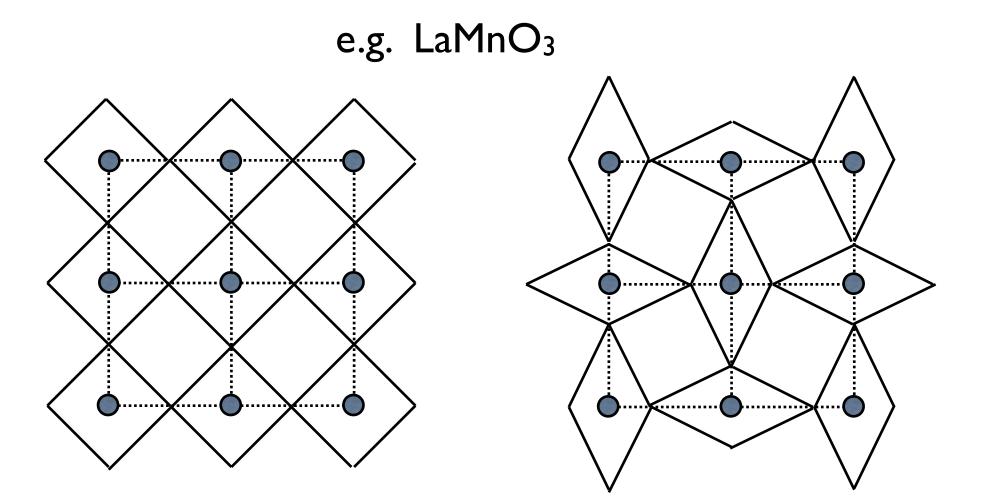
Methoden moderner Röntgenphysik Materials Science - I

Jahn-Teller distortion



Methoden moderner Röntgenphysik Materials Science - I

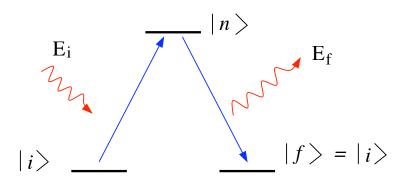
cooperative Jahn-Teller distortion - orbital order



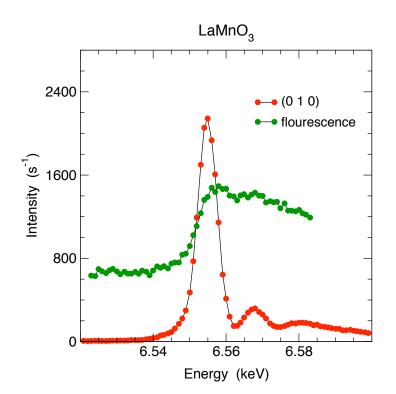
no change in lattice parameters

Methoden moderner Röntgenphysik Materials Science - I

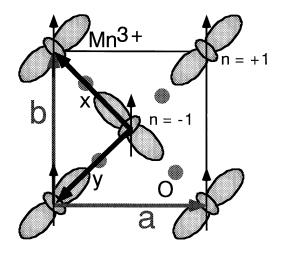
resonant x-ray scattering

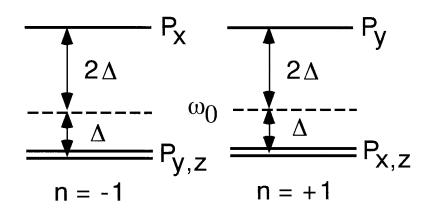


at Mn K-edge: |i>=1s|n>=4p



resonant x-ray scattering





at the absorption edge the atom form factor depends on the incident and scattered polarization:

$$f = f0 + \Delta f(\omega)$$

$$\Delta f(\omega) = \mathbf{e}^{t_{f}} \cdot f'(\omega) \cdot \mathbf{e}_{i}$$

$$f' = (f'_{\alpha,\beta}) = r_{0}/m \sum_{j} \frac{\langle Is \mid P_{\beta} \mid 4p_{j} \rangle \quad \langle 4p_{j} \mid P_{\alpha} \mid Is \rangle}{E(4p_{j}) - E(Is) - h\omega - i\Gamma/2}$$

$$f_{||} = \frac{r_0}{m} \frac{|\mathsf{D}|^2}{h(\omega - \omega_0) + 2\Delta - i\Gamma/2}$$
$$f_{\perp} = \frac{r_0}{m} \frac{|\mathsf{D}|^2}{h(\omega - \omega_0) - \Delta - i\Gamma/2}$$

with $\langle Is | P_{\alpha} | 4p_j \rangle = D \delta_{\alpha_j}$

(3 0 0) Intensity

$$I(\mathbf{Q}) = I_0 \cdot |F(\mathbf{Q})|^2 = I_0 \cdot |\sum_l o_l f_l e^{i\mathbf{Q}.\mathbf{b}_l} e^{-\mathbf{Q}^t.U_l.\mathbf{Q}}|^2$$

$$F(300) = f_1(\omega, \mathbf{e}_i, \mathbf{e}_f) - f_2(\omega, \mathbf{e}_i, \mathbf{e}_f)$$

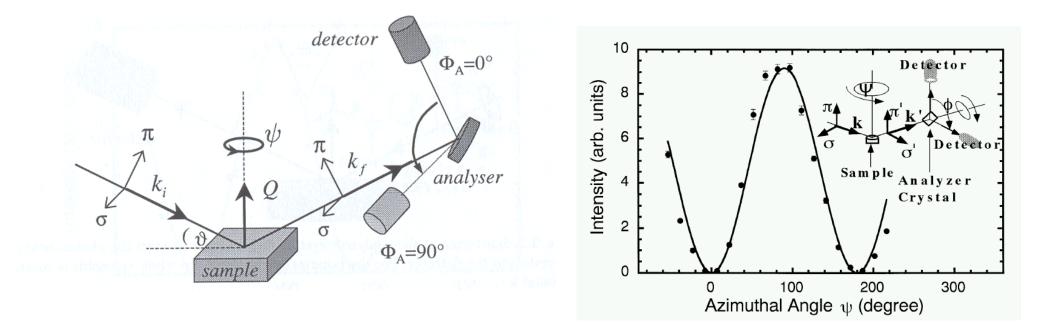
$$= \mathbf{e}_f^t.[\hat{f}_1(\omega) - \hat{f}_2(\omega)].\mathbf{e}_i$$

$$\doteq \mathbf{e}_f^t.\hat{F}(300).\mathbf{e}_i \quad ,$$

$$\hat{F}(300) = \hat{f}_1 - \hat{f}_2 = \begin{pmatrix} f_\perp - f_{\parallel} & 0 & 0\\ 0 & f_{\parallel} - f_\perp & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

$$I = I_0 \cdot \left| \mathbf{e}_f (U \hat{F}(300) U^t) \cdot \mathbf{e}_i \right|^2, \text{ where}$$
$$U \hat{F}(300) U^t = \begin{pmatrix} 0 & f_{||} - f_{\perp} & 0\\ f_{||} - f_{\perp} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

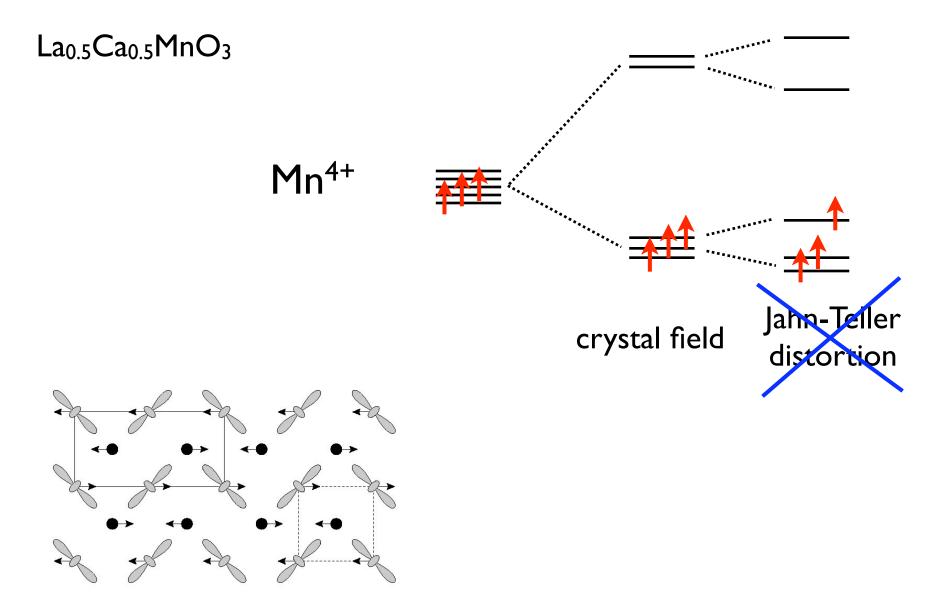
azimuthal dependence



resonant scattering at transition metal L-edges

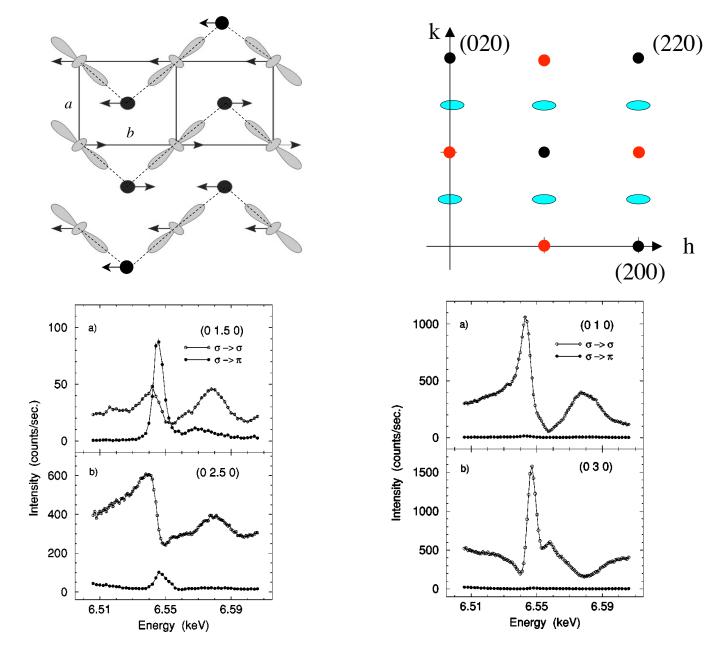
- direct sensitivity for d-electrons, thus orbital order is probed directly, not the Jahn-Teller distortion as for k-edge
- large resonant enhancement for magnetic order
- small momentum transfers achievable, (100) of LaMnO3 out of reach
- surface sensitive
- ultra high vacuum conditions necessary

doping - charge order



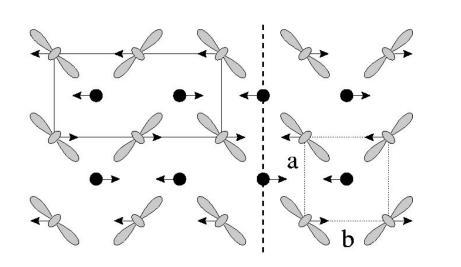
Methoden moderner Röntgenphysik Materials Science - I

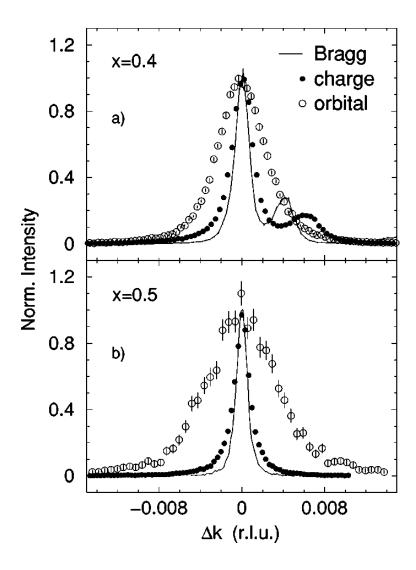
charge/orbital order resonant diffraction



Methoden moderner Röntgenphysik Materials Science - I

domains - correlation length





summary

solids state phase transitions order parameter power laws with critical exponents correlation length superlattice reflection

transition metal oxides symmetry of d-electrons in cubic crystal field Jahn-Teller effect resonant x-ray scattering

literature

C. Kittel, Introduction to solid state physics, Wiley & Sons 2005

H.E. Stanley, Introduction to phase transitions and critical phenomena, Oxford Science Publications, 1971

W. Gebhard and U.Krey, *Phasenübergänge und kritische Phänomene*, Friedr.Vieweg & Sohn, Braunschweig/ Wiesbaden 1980

J.J. Sakurai, Advanced Quantum Mechanics, Series in Advanced Physics (Addison-Wesley, 1967)

S.W. Lovesey and S.P. Collins, X-ray Scattering and Absorption by Magnetic Materials, Oxford Series on Synchrtron Radiation (Clarendon Press-Oxford, 1996)

Methoden moderner Röntgenphysik Materials Science - I