

### Surface Sensitive X-ray Scattering



## Oliver H. Seeck

Hasylab, DESY

Grazing Incidence Diffraction

The basic idea

#### Introduction

- Concepts of surfaces
- Scattering (Born approximation)
- Crystal Truncation Rods
- The basic idea
- How to calculate
- Examples

#### Reflectivity

- In Born approximation
- Exact formalism (Fresnel)
- Examples

#### Example Penetration depth

### Diffuse Scattering

- Concepts of rough surfaces
- **Correlation functions**
- Scattering Born-approximation
- Examples DWBA



### Surface Sensitive X-ray Scattering



# Oliver H. Seeck

Hasylab, DESY

#### Introduction

Grazing Incidence

Diffraction

- Concepts of surfaces
- Scattering (Born approximation)

Example

Penetration depth

The basic idea

- Crystal Truncation Rods
- The basic idea

- How to calculate

Reflectivity

Examples

Diffuse Scattering

Concepts of rough surfaces

Correlation functions

Scattering Born-approximation

In Born approximation

Exact formalism (Fresnel)

DWBA

Examples

Examples



4

The infinite sample density could be a crystal lattice ( $\rightarrow$  Bragg peaks) The shape function could be a cube (for a cube shaped sample)





# Estimate of the surface effects on the scattering



Introduction





With the delta-function 
$$\delta(x-x_0) = \begin{cases} \infty & \therefore x = x_0 \\ 0 & \vdots x \neq x_0 \end{cases}$$
 and  $\int \delta(x-x_0) dx = \\ and the shape function \\ S(x) = \begin{cases} 1 & \vdots -Na/2 < x < +Na/2 \\ 0 & \vdots otherwise \end{cases}$ 

 $I(q) = \left| \int S(x) \cdot \sum_{n=-\infty}^{\infty} \rho_0 \partial x \cdot na + a/2 \right| \exp(iqx) dx \right|^2 = \left| F \left\{ S(x) \cdot \sum_{n=-\infty}^{\infty} \rho_0 \partial x \cdot na + a/2 \right\} (q) \right|^2$ 







Surface Sensitive X-ray Scattering















 $I(q) = |F \{\rho(r)\}(q)|^2 = |F \{\rho_{\infty}(r)S(r)\}(q)|^2$  $= |\{ \mathcal{F} \{ \boldsymbol{\rho}_{\infty}(\boldsymbol{r}) \} \otimes \mathcal{F} \{ S(\boldsymbol{r}) \} \} (\boldsymbol{q})|^{2} = |\mathcal{F} \{ \boldsymbol{\rho}_{\infty} \} \otimes \mathcal{F} \{ S \} |^{2}$ 

by the Fourier Transformation T without violating the proof

The Inverse Fourier Transformation Operator  $\ r^{-1}$  can be replaced

 $= F^{-1} \{ f_1 \} \otimes F^{-1} \{ f_2 \}$ 

 $= \mathcal{F}^{-1} \{ \mathcal{F} \{ \mathbf{F}_1 \otimes \mathbf{F}_2 \} \} = \mathbf{F}_1 \otimes \mathbf{F}_2$ 

 $= \mathcal{F}^{-1} \{ \mathcal{F} \{ F_1 \} \cdot \mathcal{F} \{ F_2 \} \} \text{ with } F = \mathcal{F}^{-1} \{ f \}$ 

Thus:

Proof:

 $F^{-1}\{f_1 \cdot f_2\} = F^{-1}\{F\{F^{-1}\{f_1\}\} \cdot \{F\{F^{-1}\{f_2\}\}\}$ 

From the Convolution Theorem follows :  $F \{f_1, f_2\}(q) = \{F \{f_1\} \otimes F \{f_2\}\}(q)$ 





- (1) If the samples are crystalline: The shape of the Bragg-peaks are modified  $\downarrow$ Crystal Truncation Rods (CTR)
- (2) Non-crystalline samples modified zero order Bragg-peak at (0,0,0) (the primary beam) is (Is also used for crystalline samples, if the crystallinity is of Reflectivity no real Bragg-peaks, but the
- (3) Grazing Incidence Diffraction (GID) to analyze crystalline in-plane properties (also depth dependent).

no interest).

(4) Diffuse scattering around the CTR or the reflectivity to learn about non-crystalline in-plane properties.



1

# Crystal Truncation Rods (CTR)

With Crystal Truncation Rod measurements (CTR) and thin film systems at CRYSTALLINE samples structural properties of surfaces



can be investigated on a nanoscale.

**CTR** sensitive

Surface Sensitive X-ray Scattering

**CTR** sensitive

**CTR** insensitive





positions  $\mathbf{R}_{j} = \mu_{j}\mathbf{a} + v_{j}\mathbf{b} + \phi_{j}\mathbf{c}$  with [volume  $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ ] containing M atoms with density  $\rho_j(\mathbf{r})$  at the Crystals are made from unit cells with base vectors a, b, c  $\mu_j, \nu_j, \phi_j < 1$ 



electron density of the crystal.

15

$$\rho(\mathbf{r}) = \sum_{n_1 = 1}^{N_1} \sum_{n_2 = 1}^{N_2} \sum_{j=1}^{N_3} \sum_{j=1}^{M} \rho_j (\mathbf{r} + n_1 \mathbf{a} + n_2 \mathbf{b} + n_3 \mathbf{c} + \mathbf{R}_j)$$
  
=  $\sum_{n_1, n_2, n_3} \sum_{j=1}^{N_3} \int \rho_j (\mathbf{u}) \, \delta(\mathbf{u} - \mathbf{r} - n_1 \mathbf{a} - n_2 \mathbf{b} - n_3 \mathbf{c} - \mathbf{R}_j) \, d\mathbf{u}$ 

scattering amplitude A(**q**) :

$$A(q) = \int \rho(\mathbf{r}) e^{iq \cdot \mathbf{r}} d\mathbf{r} = \int \sum_{\substack{n_{1,2,3} \\ i \\ n_{1,2,3} \\ j}} \rho_j(\mathbf{u}) \int e^{iq \cdot \mathbf{r}} \delta(\mathbf{u} - \mathbf{r} - n_1 \mathbf{a} - n_2 \mathbf{b} - n_3 \mathbf{c} - \mathbf{R}_j) d\mathbf{r} d\mathbf{u}$$

$$= \sum_{\substack{n_{1,2,3} \\ i \\ n_{1,2,3} \\ j}} \int \rho(\mathbf{u}) e^{iq \cdot (-\mathbf{u} + n_i \mathbf{a} + n_2 \mathbf{b} + n_3 \mathbf{c} + \mathbf{R}_j)} d\mathbf{u} = \sum_{\substack{n_{1,2,3} \\ n_{1,2,3} \\ n_{1,2,3$$

 $S_j(q)$  structure factor

Surface Sensitive X-ray Scattering















# **Crystal Truncation Rods**

- н. CTR measuremtents are applicable for crystalline samples ONLY
- н They are sensitive to very small displacements of atoms the surface near
- н independent CTRs For full information about the sample, three or more linear are necessary
- In Born approximation  $(I_{scatt} << I_{o})$

$$I(q) = |F \{ \rho(r) \}(q)|^2 = |F \{ \rho_{\infty}(r)S(r) \}(q)|^2$$

and S(r) the shape function. with  $\rho_{\alpha}(r)$  the periodic infinit electron density