P65 a new beamline for standard XAFS at a small emittance storage ring.

E. Welter, M. Herrmann, R. Chernikov

PETRA III extension: Beamline P65

User demands / Beamline specifications

User demands:

- Large Samples, often inhomogeneous on µm scale
- Minimised radiation damage (Biological samples)
- "Simple" and stable set-up
- Photon flux larger than at DORIS III

Internal boundary conditions:

- Re-use of C-type DCM (defines E-range + maximum power load)
- Storage ring properties (small emittance, high energy, large circumference)

- Available space

Resulting beamline specifications:

- Millimetre sized beam spot on sample
- No focusing mirrors
- Undulator source
- Photon flux > 10¹¹ s⁻¹
- Energy range: 4 44 keV
- Easy to handle standard operating procedures for inexperienced users
- Complementary to P64 (see poster by W. Caliebe et al.)

Source

- Storage ring properties exclude use of bendingmagnet and wiggler radiation
- Maximum tolerable heat load on 1st DCM crystal
 ~2 W/mm²
- Energy range (2.4) 4 45 keV
- Beam size on sample in the mm² range
- Wide overlap between 1st and 3rd harmonic
- Minimum magnetic gap: 9.5 mm
- Period length: 32.0 mm Number of periods: 12 Minimum magnetic gap: 9.5 mm K_{max}: 2.6 (Magnetic gap 10.05 mm)

Beamline optics

Water cooled double crystal monochromator - Si 111 and 311 crystal pairs (2.4 – 44 keV)

- Maximum acceptable power load: 2 W / mm²

2 plane mirrors

- 3 optical surfaces each (Si, Rh, Pt)
- Variable angle of incidence, 1.5 4.5 mrad for effective higher harmonics suppression
- First mirror acts as low pass filter to reduce power load of 1st DCM crystal

Photograph of the water cooled DCM

Brilliance of a 12 periods U32.0 undulator with $K_{max} = 2.6$ (magnetic gap 10.05 mm), overlap between 1st and 3rd harmonic and scan ranges of Mn, Fe and Co standard EXAFS scans.

Flux through an aperture (1*2 mm²) in 60 m distance from a 12 periods U32.0 undulator with K tuned to 2.384 (5th harm. at 20000 eV)

Cumulated reflectivity of two plane mirrors at varying angles of incidence. The presented reflectivities include the efect of a conservatively estimated value of 5 Å for the roughness of the mirror surface. The mirror in front of the DCM is reducing the power load on the 1st DCM crystal.

E / eV	Κ	Harm.	Mirror	Filter	Power load	$ \begin{array}{c} {\bf Flux} \ / \\ {\bf 10}^{12} \ {\bf mm}^2 \ {\bf s}^{-1} \end{array} $
4000	1.867	1	Si 4mrad		$0.56 \mathrm{~W/mm^2}$	9.5
7516	2.600	3	Rh 4mrad		$1.22 \mathrm{ W/mm^2}$	8.9
15000	2.306	3	Rh 4mrad		$1.27 \mathrm{~W/mm^2}$	6.8
20000	2.384	7	Pt 3mrad	C 0.5 mm	$1.53 \ \mathrm{W/mm^2}$	4.4
30000	1.767	7	Pt 2mrad	C 2 mm	$1.63 \ \mathrm{W/mm^2}$	2.3
44000	1.578	9	Pt 1.8 mrad	C 2 mm	$1.54 \mathrm{~W/mm^2}$	0.62
44000	1.867	11	Pt 1.8 mrad	C 2 mm	1.87 W/mm^2	0.85

Powerload and flux-density (10⁻³ BW) on the 1st crystal of the DCM at different energies.

Scanmode

- Stepwise scans of the heavy undulator would very soon result in failures of the undulator mechanics.
- Undulator gap and DCM will be scanned in a continuous mode, the anticipated times per scan are between 1 and 5 min.
- DCM and undulator gap scans will be synchronised
- Synchronised gap scans already successfully tested at beamline P06, deviation between undulator and DCM energy < 2 eV at 9 keV

Experimental hutch

- Large experimental table with standard EXAFS set-up
- Ample space for specialised in-situ set-ups
- Infrastructure for problematic gases
- Temperature stabilised to +/- 1° C
- Experimental table: 2.5 * 1.2 m²
- Detectors: Ionisation chambers, PIPS, energydispersive semi-conductor detectors

CAD drawing of the experimental hutch of beamline P65. Visible are the experimental table, and the air-conditiong system. The size of the hutch is approximatly 30 m², the height of the ceiling ~4m.

Test scans measured at DORIS III beamline A1. **Red:** 4 continuous scans 400 s each. **Black:** Conventional stepwise scan, scan time 1800 s. **Blue:** Merged continuous scans (Scan time 1600 s) Sample 1Sample 2Upper row: Intensity distributions (I0) at different DCM-energies
and constant undulator gap
Lower row: Two 'samples' used for the simulation of the
influence of deviations of the undulator gap tuning from the
DCM-energy. The resulting $\Delta\mu$ was < 10⁻⁴

Photograph of the set-up at the currently operational DORIS III beamline C. The complete set-up will be re-used in the experimental hutch of P65

Sample preparation lab

A sample preparation lab will be shared with beamline P64. It will be adjacent to the 2 beamline's experimental hutches and contain a fume hut, a glove box, lab benches and equipment for sample preparation like an analytical balance and a pellet press