Optics for Synchrotron Radiation

Introduction to the basic optical elements in synchrotron radiation beamlines

Horst Schulte-Schrepping, FS-BT

Summer Student Program Hamburg, 26. Jul 2013

FLASH

FLASH II (civil construction in progress)

PETRA III

PETRA III extension project (start of civil construction 19 Dec. 2013)

PETRA III experimental hall

PETRA III extension project Hall North and Hall East

FLASH / FLASH II experimental hall

Requirements of X-Ray Optics at a Third Generation Facility

Task: Preservation of the optical parameters of the source

Key parameters for the experiment

brightness coherence beam size and divergence at the sample

Challenges

mechanical stability of all components heatload issues, thermal management quality of optical surfaces

Realization

mechanical and optical design manufacturing and infrastructure capabilities optical and "at wavelength" metrology

	β_x	β_y	σ_x	σ_y	$\sigma_{x'}$	$\sigma_{y'}$	ID-length	$\beta_x = \sigma_x / \sigma_{x'}$
	[m]	[m]	$[\mu m]$	[µm]	$[\mu rad]$	$[\mu rad]$	[m]	
$\log \beta 5 \mathrm{m}$	1.3	3	35.9	5.7	28	5.0	5	
high- β 5 m	20	2.38	141	5.2	8.6	5.2	5	

• horizontal beam size (FWHM@12keV) in 100m distance: low-β: 6.7mm high-β: 2mm

 vertical beam size 	:	1.2mm
--	---	-------

- total power (2m or 5m ID, 100mA)
 power density at monochromator
 typical power at monochromator
 100 800 Watt
- Most beamlines will make use of the very small source size and will typically focus the beam down to values in the μ m region and for special application into the 10nm-100nm range.

Thermal mangement: Filter

Absorption length (thickness for an attenuation to 1/e of the incoming flux) of common window materials Be, C, Al and the exemplary evolution of the total power along an undulator beamline due to sequential filtering of the undulator spectrum

Diamond Windows

White beam at P13 (M.Degenhardt and EMBL/P13)

ESRF front end window, Jean-Claude Biasci, MEDSI-2004 PETRA III CVD diamond window (Diamond Materials, Freiburg)

Free window apertures from Ø2 mm, thickness from 20 μ m to 300 μ m, in CVD and single crystal diamond technology.

CVD Diamond White Beam Filter Units

Water cooled, up to 3 units with two filters each in all 14 PETRA III front-ends

CVD diamond, 300µm thickness (Diamond Materials, Freiburg) CVD diamond 300µm with 25µm Copper on both sides 0.5mm, 0.6mm, 0.9mm, 1.0mm, 4mm polished Glassy Carbon

High Power Slit Systems for PETRA III

High Power Slit Systems for PETRA III undulator beamlines

- High precision roll angle
- Safety Shutter function
- Compact design for canted undulator beamlines

Glidcop® slits

mirrors	multilayers	single crystals		
total external reflection	Bragg diffraction $2dsin(heta_B+\delta)=n\lambda$			
reflection	reflection	reflection, transmission		
$ heta_Cpprox 0.4^\circ$, Au at 10keV	$ heta_B pprox 1^\circ$	$4^{\circ} \le \theta_B \le 90^{\circ}$		
	functions			
focusing	$\Delta E/E:10^{-3}10^{-1}$	$\Delta E/E:10^{-2}10^{-8}$		
high energy cut-off	focusing	focusing		

Mirrors: Optical Properties

Reflectivity at 1Å and energy bandpath at the critical angle for Au, Be, and C coatings acting as a high energy cut-off.

Mirrors: Geometrical Properties

plane mirrors used for deflection/offset and filtering

point to point focusing mirror example: toroidal mirror

sagittal:
$$\frac{1}{r_1} + \frac{1}{r_2} = \frac{2\cos\alpha}{r} = \frac{1}{f_{sag}}$$
, tangential: $\frac{1}{r_1} + \frac{1}{r_2} = \frac{2}{R\cos\alpha} = \frac{1}{f_{tan}}$
 \implies one angle α at which $f_{sag} = f_{tan} \Longrightarrow \cos\alpha = \sqrt{\frac{r}{R}}$

typical values: r₁=20m, r₂=10m, α = 89.6°, r=93mm, R=1.9km

Mirrors: Kirkpatrick-Baez system

Error free focusing can only be achieved with an ellipsoidal mirror surface. The Kirkpatrick-Baez (KB) mirror system circumvents the fabrication of this complicated shape by separating the vertical and horizontal focusing into two steps using elliptically bent plane mirrors.

Mirrors: Figure, Roughness, Mechanical Design

Slope error and roughness of a 500mm long plane Si mirror

Mirror support and bender design for 1m long bendable plane mirrors

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 13

Mirrors: Metrology at a Kirkpatrick-Baez system

Parameter of a JTEC planar ellipse made for PETRA III, beamline P06

Specifications:

Source distance r: 93595 mm, Focus distance r`: 355 mm, Incidence angle θ : 2.7 mrad **Metrology result:**

r: 93594.98 mm, r`: 355 mm, θ: 2.71 mrad

Residual slope error: 0.041 µrad rms

In meridional direction, (inspected aperture length: 87.4 mm) **Residual figure error:** meridional: 0.39 nm rms / 1.1 nm pv

Measurements by F.Siewert, HZB

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 14

Mirrors: Metrology Tools

The measured quantities are figure or shape, slope-error, and micro-roughness.

Standard optical metrology instruments used to inspect synchrotron radiation optical components are:

long trace profiler (LTP) or nanometer optical component measurement machine (NOM)

LTP (commercial,Ocean Optics) or NOM (HZB, F.Siewert) for measuring surface slope error and curvature in a line scanning mode over the full optics length (~m).

figure interferometer

Figure measuring over a larger area. Figure interferometers are manufactured by ZYGO, and Veeco. The aperture is about 150mm. Stitching methods are under development which may overcome this limitation towards larger optics sizes.

optical interference roughness microscope

Local measurement (sub-mm) of the roughness on an sub-Å scale. Interference microscope (based of phase shifting technique) are manufactured by Veeco-Wyko, ZYGO, Phase Shift, Micromap.

Mirrors: Metrology Tools

long trace profiler (LTP)

nanometer optical component measurement machine (NOM)

figure interferometer

optical interference roughness microscope

DESY

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 16 (pictures from CLS Optical Metrology Laboratory 2001-2004 activity report and F.Siewert, HZB)

mirrors	multilayers	single crystals	
total external reflection	Bragg diffraction $2ds$	$n(heta_B + \delta) = n\lambda$	
reflection	reflection	reflection, transmission	
$ heta_{C} pprox 0.4^{\circ}$, Au at 10keV	$ heta_B pprox 1^\circ$	$4^{\circ} \leq heta_B \leq 90^{\circ}$	
	functions		
focusing	$\Delta E/E:10^{-3}10^{-1}$	$\Delta E/E:10^{-2}10^{-8}$	
high energy cut-off	focusing	focusing	

Multilayer

Multilayer principle and reflectivity curve of a typical W/Si multilayer. The present limit in the d-spacing of an AB-layer is in the 15 Å range.

Gratings

mirrors	multilayers	single crystals	
total external reflection	Bragg diffraction 2ϵ	$sin(heta_B + \delta) = n\lambda$	
reflection	reflection	reflection, transmission	
$ heta_{C}pprox 0.4^{\circ}$, Au at 10keV	$ heta_B pprox 1^\circ$	$4^{\circ} \le \theta_B \le 90^{\circ}$	
focusing	$\Delta E/E:10^{-3}10^{-1}$	$\Delta E/E: 10^{-2}10^{-8}$	
high energy cut-off	focusing	focusing	

Crystals and Bragg's Law

$$2d\sin\theta_B = \lambda \Longrightarrow \frac{\delta\lambda}{\lambda} = \frac{\delta E}{E} = \delta\theta\cot\theta_B$$

Ultrahigh Energy Resolution Monochromators and Analysators

The non-dispersive (+/-) setting of two crystals is the most common realization of an X-ray monochromator in the hard X-ray energy range starting from ~2.4keV.

Basic fixed-exit monochromatic beam options:

- separated movement of both crystals
- central rotation and short or long 2nd crystal

Channel-Cut type (monolithic or Pseudo) providing better intrinsic beam stability, but with limited energy range and moving, not fixed exit, monochromatic beam.

Monochromator System Design: Double Crystal Options

basic fixed exit setup with separated crystals

fixed exit setup with central rotation Θ , both crystals on rotating backplate

Channel-Cut (monolithic or pseudo) setup with one rotation axis only. Energy range limited by crystal size and monochromatic beam **not** fixed exit

PETRA III High Heatload Monochromators

FMB-Oxford Systems for PETRA III

Heatload Issues: Water cooling

Heatload Issues: Damage

Re-crystallized copper absorber damaged by a white synchrotron light beam after a failure of the water cooling system

Heatload Issues: Liquid Nitrogen Cryo-Cooling

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 28

Heatload Issues: LN2 Systems

Indirectly cooled crystal sets

FMB-Oxford Model D cryocooler, cryo-loop and vessel (from manual)

Heatload Issues: LN2 Systems: Photon Beam Stability

first crystal set

second crystal set

Channel-Cut crystal system integrated into the high heatload fixed exit design.

LN2 Distribution Systems

central storage, central phase separator, and LN2 distribution systems installed at PETRA III

heat transfer capacity of up to 2000 Watt for each monochromator

gas exhaust

In2 refill valve

high pressure lines to monochromator

In2 refill

LN2 Distribution Systems

local storage and helium refrigeration systems installed at Spring8

heat transfer capacity of 500 Watt for each monochromator

Vacuum Chamber

T. Mochizuki et al. / Nuclear Instruments and Methods in Physics Research A 467–468 (2001) 647–649

Photos H. Schulte-Schrepping

Top-Up Operation: Stable Power Load on Optics

High Heatload Monchromators

Monochromator systems for canted undulator sectors at PETRA III

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 34

Large Offset Monochromator LOM1250 for P08

Vertical offset of a monochromatic beam = +1.25m

2 * 1.5m crystal translation, two separate vessels with granite support

Large Offset Monochromator

Both vessels with mounted translation

Installed system in P08 hutch

Large Offset Monochromator LOM500 for P03

4.5m

Monochromatic beam with Multilayer option, high heat load design, LN2 cooled

Vertical offset = - 0.5 m

One 2.4m long translation for second crystal/multilayer system

Beamline-Technology Infrastructure

Local infrastructure for the maintenance, on-site repair and modification of user experiments, and for the preparation of samples :

- mechanical workshop
- chemistry laboratories
- vacuum group infrastructure support
- crystal/sample preparation laboratory

Mechanical Workshop

Chemistry Laboratories

Beamline-Technology Infrastructure

Vacuum group facilities

- Cleaning facilities for UHV parts
- Assembly and test of vacuum components in clean room environment
- Leak testing, UHV mass-spectrometry

Crystal/sample preparation

Specialized tools and procedures for

- Crystal alignment, cutting, etching, polishing
- Sample preparation

Crystals Optics: Silicon

silicon based monochromators

(111),(110),(100),(311),(511) ,.....with arbitrary crystal lattice orientation

in Bragg and Laue Configuration available due to locally available processing technology

Crystal Optics: Crystal Orientation

Silicon single crystal ingots 4inch dia., length 25cm-30cm Crystal orientation unit and Laue camera at fixed anode Mo X-ray tube. Image plates and scanner for Laue camera

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 41

Crystals Optics: Cutting and Dicing

Wire-saw for coarse cutting of large Si pieces and special (hard) materials, i.e. tungsten, molybdenum NC-controlled cutting with rotating blade or optional high speed milling tool, max thickness of work piece of 4 inch

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 42

Horst Schulte-Schrepping: Optics Preparation

Crystals Optics: Surface Treatment

several grinding, lapping, and polishing tools mechanical and mechanical/chemical (Syton®) surface treatment

Gallery of Silicon Art

Torii crystals: W1, BW1, BW2, BW4, BW6

Laue case wideband focusing, 100mm wide: HARWI-II

Bartels type channel cut

Laue case delay line crystal pair, wedge thickness from 200µm to 20µm over 20mm lamella height.

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 44

Crystals Optics: Metrology of Rocking Curves

High resolution rocking curve scans along a 100mm long line inside a 100*100mm² surface area. Large system volume allows for full crystal systems with a height up to 220mm, i.e due to heat exchangers.

Automatic data evaluation provides height profiles from integrated rocking curve shifts.

Mechanical Metrology: Autocollimation Systems

High precision simultaneous determination of 2 rotational degrees of freedom. Two autocollimation systems with 0.1 and 0.01 arcsec accuracy Granite benches in sand-boxes and on decoupled base structure.

Elcomat 2000, 0.1 arcsec accuracy

Elcomat HR, 0.01 arcsec accuracy

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 46

Horst Schulte-Schrepping: Optics Preparation

Crystals Optics: Diamond

diamond based monochromators, phase plates

mostly (100) and rarely (111),(110) are the only symmetric faces available

(100) highly oriented, the others within a (few) 0.1 to 1 degree region of miscut

Few local etching and polishing tests

P02.1 Diamond

Mounted (100) E6-Diamond crystal, Laue case (111), indirect water cooling.

6.5mm x 6.5mm x 0.4mm

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 48

Diamonds: Growth Issues

HPHT Diamond

Growth sector dependence of N concentration, [111]>[100]>[113]>[115]>[110]

B concentration, [111]>[110]>[100]=[113]>[115]

Cube growth sectors have A high density of perp. dislocations

Diamonds: Classification

High thermal conductivity and low thermal expansion

Monochromator applications require perfect and large (few mm²) diamond plates

Classification scheme for a diamond HPHT (100) diamond crystal for synchrotron applications:

Top plate: highest quality

Type Two plates with smaller perfect area, but larger support area

lenses	zone-plates	Bragg-Fresnel zone-plates	
refraction	diffraction	diffraction	
transmission	transmission	reflection by $ heta_B$	
$\delta pprox 10^{-6}$	$\Delta r_n =$ 30 – 100nm		
	functions		
focusing	focusing	monochromatization and focusing	

Lenses: Refractive Optics

Complementary design route to high precision mirror developments Optical elements based on refraction : X-ray refractive lenses

- R_0 R_0 Imm(n)
- lens maker formula 1/f=2(n-1)/R
- small R, e.g. 180µm and many lenses
- low absorption material and small d, e.g. 150 μm
- $2R_0$ energy dependent, e.g. at 8 keV ~ 1.2 mm

- choice of materials: AI, **Be**, **C**, B₄C
- KB-like decoupled planar devices: Si, C

Be X-ray lens by B.Lengeler, Ch. Schroer

diamond planar refractive lenses for third and fourth-generation X-ray sources: B. Nöhammer, J. Hoszowska, A.K.Freund, Ch. David, J. Synchrotron Rad. (2003). **10**, 168-171

Development of Refractive Optics Systems at PETRA III

From stacking lenses to automated systems and Transfocators

Original manual stacked parabolic lenses as used in monochromatic and white beams at ESRF (C.Schroer et.al.)

Mixed 1D and 2D lenses Transfocator at the PETRA III coherence beamline P10. (M.Sprung et.al.)

Remotely stackable and moving lens system at PETRA III MINAX beamline P03 (S.Roth et.al.)

lenses	zone-plates	Bragg-Fresnel zone-plates	
refraction	diffraction	diffraction	
transmission	transmission	reflection by $ heta_B$	
$\delta pprox 10^{-6}$		$\Delta r_n =$ 30 - 100nm	
functions			
focusing	focusing	monochromatization and focusing	

focal spot size $d = \lambda/2N.A$.

Zone plate structures for hard x-rays must be several microns thick to achieve high efficiency

Small focal spot sizes require small zone widths, which implies high aspect ratios (~100)

It is difficult to produce such high aspect ratio structures using lithography

Sectioning of multilayers allows very high aspect ratios to be produced

Standard lithographically fabricated hard x-ray zone plate Transmission multilayers fabricated by deposition and sectioning

J. Maser, Ph.D. Dissertation, Gottingen, 1993; J. Maser, G.B. Stephenson, S. Vogt, W. Yun, A. Macrander, H.C. Kang, C. Liu, R. Conley, Proc. SPIE, Denver Annual Meeting, 2004.

Links

XOP

http://www.esrf.eu/Instrumentation/software/data-analysis/xop2.3 (Including SHADOW)

SPECTRA http://radiant.harima.riken.go.jp/spectra

PHASE

http://www.helmholtzberlin.de/forschung/grossgeraete/undulatoren/arbeitsgebiete/phase_en.html

X-Ray Interactions with Matter

http://henke.lbl.gov/optical_constants/

X0h: X-ray dynamical diffraction data on the web

http://sergey.gmca.aps.anl.gov/x0h.html/

Thank you

Horst Schulte-Schrepping | Optics for Synchrotron Radiation Experiments | 26 Jul 2013 | Page 57