

Cornelia Wunderer DESY – Photon Science Detectors iWoRiD 2018, Sundsvall

Percival

In a nutshell

Unprecedented combination:

 1408×1484 pixels 300 Hz frame rate below 15 e⁻ noise sensitive to single photons handle 5.10⁴ ph/pix/frame

... BSI processed for good soft X-ray performance

CFEL

SCIENCE

Science Motivation

Watching biomolecules in action ... and more

- Making optimal use of the brilliance of today's photon sources requires
 - Single-shot imagers with suitable frame rates
 - Very large dynamic range
 single-photon discrimination to
 - 10⁴ photons/pixel/frame and more
 - Millions of pixels with little/no dead area
- In the soft X-ray regime
 - Scientific interest e.g. biosystems, weakly scattering samples
 - Particular challenge: small signal requires very low noise
 - Particular challenge: sensor surface

P2M Sensor

Designed by partner Rutherford Appleton Lab / STFC

- CMOS imager (180nm technology)
- On-chip digitization (11520 ADCs)
- 3 auto-adjusting gain levels (per pixel, per frame, overflow)
- 1408 × 1484 pixels, 27μm × 27μm
- 4 × 4 cm² continuous imaging area (stitched sensor)
- Data rate at 300Hz frame rate is 20 Gbit/s, streamed out over 45 LVDS lines (240 MHz, double data rate)

P2M – a stitched sensor

Designed by partner Rutherford Appleton Lab / STFC

1408 x 1484 pixel P2M

stitching blocks

3520 x 3710 pixel variant, P13M ~ 10x10cm²

P2M Sensor – Multiple Gains

Designed by partner Rutherford Appleton Lab / STFC

- 3 auto-adjusting gain levels (per pixel, per frame, overflow)
- Readout sequentially tests all three overflow configurations for each pixel against threshold
- Only best candidate digitized & sent to DAQ

Backside Illumination

How to enable soft X-rays to interact in the sensitive volume

Entrance window post-processing

High sensitivity to low-energy radiation requires:

- Absence of passive material
- Absence of traps
- Optimized field geometry at sensor surface

High-quality backside processing is crucial!

Carrier Wafer SiO₂ sensitive volume

e.g. 50 nm of SiO_2 : loss of 25% of 250 eV photons

Post-Processing for Percival

- Prototype Sensor post-processed by NASA's JPL "delta-doping"
 - Pioneered ultra-thin entrance windows (few nm)
 - Bureaucratic difficulties mainly make access difficult & time-consuming
 - TS sensors processed by JPL give nice soft X-ray performance
 - Unfortunately due to said bureaucratic difficulties –
 e.g. not possible to BSI-process 2nd generation test devices in reasonable time
- P2M sensor post-processing
 - JPL remains a key partner and will process wafers
 - Exploring alternate routes to "good" post-processing (for some applications 10s of nm are acceptable)
 - EMFT currently a partner in tests (bonding, thinning, pad exposure)
 - Some routes to thicker dopant layers (10s to 100s of nm) exist, not tried yet
 - Easier-to-access MBE-based post-processing capable of processing both wafers and single (prototype) sensors direly needed

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

DESY.

- In-vacuum detector head 🙀
 - sensor

- 🔹 Includes sensor biasing board 🥰
- Several hundred LVDS control & data lines, are (re)distributed here
- Sensor will be cooled to ~ -30°C
- 2-side buttable
- movable

LTCC routing & actual board

DESY. | Percival soft X-ray Imager | Cornelia Wunderer, 25.6.2018 iWoRiD Sundsvall

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

- Carrier board hosts
 - FPGA running finite state machine
 - Mezzanine board (also AGIPD, Lambda)
 reordering data for easier processing streaming out 20 Gbit/s data
 - Interface to slow control, facility information, trigger

Mezzanine for data streamout shared by AGIPD, LAMBDA, and Percival

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

Control & DAQ

- 20 Gbit/s from one sensor (reading full images: 300 Hz, 2M pixels, 30 bit/pixel incl. CDS)
- Virtual hdf5 developed in part for this project

DESY.

SOLEIL

- Python interface & Odin GUI interface
- API for link to Tango, DOOCs, EPICS, etc.
- Software Framework for Characterization
 - Data validation
 - Calibration constants
 - Sensor characterization

Prototype Performance – Noise

integrated charge [e]

Page 14

Prototype Performance – Gains

Dispersion of pixel gain over several chips

- Automatic gain adjustment works
- 3 gains accessible via overflow switch architecture
- Dynamic range to 3.5 Mei.e. 50k photons at 250eV

Prototype Performance – soft X-rays

backside-illuminated (BSI)

 Imaging at 92 eV, single-shot at FLASH

left: Airy ring pattern

right: fine diffraction rings from liquid sample

- Airy rings match expectation
- Charge Collection Efficiency (lower limit to Quantum Efficiency) measured at ~70% above 400 eV

RCIVAL

Prototype – Charge sharing

W22-14/30/28/33TS1.0(BSI), D, Fe55, t=200ms

- Charge from a single photon's interaction in most cases spreads over more than one pixel
- This makes detecting the photon more difficult, and more so the lower the photon's energy
- A CCE of 80% at 400eV does NOT promise we'll be able to find 80% of single photons at 400eV

E.g. *single* 600eV photons would be easily found (brightest pixel bright enough) in $\sim 2/3 - 3/4$ of cases

Epilayer thickness aim 10 μ m to optimize soft X-ray response

P2M Operation

- First light
- Visible light, room temperature
- 100Hz frame rate (streamout speed of full acquisition system still ramping up)
- Automatic gain switching works

Page 18

Project Status & Outlook

P2M FSI undergoing benchtop testing

- P2M system operates, saw first light
- P2M sensor demonstrates auto gain switching in response to illumination
- Detailed characterization (including bias tweaking etc.) ongoing
- Circuit functionality at 300Hz frame rate demonstrated (reading partial image), full readout & system ramping up to this
- P2M backthinned sensor in hand, awaiting wirebonding
- Expect first X-ray tests in fall 2018
- First delta-doped P2M BSI ~ Xmas 2018

Thank you for your attention!

and

Thanks to Percíval collaborators:

DESY:

Alessandro Marras Jonathan Correa Steve Aplin Peter Goettlicher Frantisek Krivan Manuela Kuhn Sabine Lange Magdalena Niemann Frank Okrent Igor Shevyakov Sergej Smoljanin Manfred Zimmer Heinz Graafsma

RAL:

lain Sedgwick Ben Marsh Nicola Guerrini

Elettra:

Giuseppe Cautero Dario Giuressi Anastasiya Khromova Giovanni Pinaroli Luigi Stebel Ralf Menk

Diamond:

Alan Greer Tim Nicholls Ulrik Pedersen Nicola Tartoni

PAL:

HyoJung Hyun KyungSook Kim Seungyu Rah

Soleil & DESY:

Benjamin Boitrelle

... plus past contributors: Matthias Bayer, Dipayan Das, Simone Farina, Przemyslav Gasiorek, Julien Marchal, Nick Rees, Salim Reza, Joshua Supra, Maximilian Tennert, Renato Turchetta, Michele Viti, Qingqing Xia, Hazem Yousef,

PERCIVAL

and beamline staff at Petra P04, Elettra TwinMic & CiPo, DLS I10, and Flash BL2 for their support

JPL:

April D. Jewell Todd J. Jones Michael E. Hoenk Shouleh Nikzad

EMFT:

Andreas Drost Christof Landesberger Armin Klumpp

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Cornelia Wunderer Photon Science Detectors cornelia.wunderer@desy.de +49 40 8998-6186