The PERCIVAL soft X-ray Detector

Jonathan Correa DESY – Photon Science Detectors TREDI 2019 – Trento, Italy

DESY.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES CFEL

PERCIVAL

in a nutshell

Energy Range	Primary: 250eV – 1keV Extended: 100eV - 3keV		
Quantum Efficiency	> 85%, uniform over pixel		
Pixel Size	27 um²		
Active Area	1440 x 1484 pixels / 4 x 4 cm^2		
Frame Rate	120 / 300 Hz		
"Full Well"	> 10 ⁷ e-		
Resulting Dynamic Range	10 ⁵ photons (@ 250eV)		
Sensor Output	Digital, LVDS		
Buttability	2-side (adjacent edges)		
Exposure Mode	FEL: all photons in < 300 fs Synchrotron: Quasi-continuous		

SCIENCE

DESY. | The PERCIVAL soft X-ray Detector | Jonathan Correa, Feb. 26th 2019, TREDI, Trento

Science Motivation

Watching biomolecules in action ... and more

- Making optimal use of the brilliance of today's photon sources requires
 - Single-shot imagers with suitable frame rates
 - Very large dynamic range

 single-photon discrimination to
 10⁴ photons/pixel/frame and more
 - Millions of pixels with little/no dead area
- In the soft X-ray regime
 - Scientific interest e.g. biosystems, weakly scattering samples
 - Particular challenge: small signal requires very low noise
 - Particular challenge: sensor surface

P2M Sensor

Designed by partner Rutherford Appleton Lab / STFC

- CMOS imager (180nm technology)
- On-chip digitization (11520 ADCs)
- 3 auto-adjusting gain levels (per pixel, per frame, overflow)
- 1408 × 1484 pixels, 27μm × 27μm
- 4 × 4 cm² continuous imaging area (stitched sensor)
- Data rate at 300Hz frame rate is 20 Gbit/s, streamed out over 45 LVDS lines (240 MHz, double data rate)

P2M Sensor

Designed by partner Rutherford Appleton Lab / STFC

1408 x 1484 pixel P2M

Α	В	В	С
D	Ш	Е	F
D	Е	E	F
G	Н	н	

stitching blocks

3520 x 3710 pixel variant, P13M ~ 10x10cm²

Α	В	В	В	В	В	С
D	E	Е	Е	Е	E	F
D	Е	Е	Е	Е	Е	F
D	Е	Е	Е	Е	Е	F
D	E	Е	E	Е	E	F
D	E	E	E	E	E	F
G	н	н	н	н	н	

P2M Sensor

Designed by partner Rutherford Appleton Lab / STFC

- 3 auto-adjusting gain levels(per pixel, per frame, overflow)
- Readout sequentially tests all three overflow configurations for each pixel against threshold
- Only best candidate digitized & sent to DAQ

few photons

Backside Illumination

How to enable soft X-rays to interact in the sensitive volume

Wafer Substrate

\sim 700 μm low-resistivity Si

Entrance Window Post-processing

How to enable soft X-rays to interact in the sensitive volume

High sensitivity to low-energy radiation requires:

- Absence of passive material and traps
- Optimized field geometry at sensor surface

High-quality backside processing is crucial!

Post-Processing for PERCIVAL

- Prototype Sensor post-processed by NASA's JPL "delta-doping"
 - Pioneered ultra-thin entrance windows (few nm)
 - Bureaucratic difficulties mainly make access difficult & time-consuming
 - TS sensors processed by JPL give nice soft X-ray performance
- P2M sensor post-processing
 - JPL remains a key partner and will process wafers
 - Exploring alternate routes to "good" post-processing (for some applications 10s of nm are acceptable)
 - EMFT currently a partner in tests (bonding, thinning, pad exposure)
 - Some routes to thicker dopant layers (10s to 100s of nm) exist, not tried yet
 - Easier-to-access MBE-based post-processing capable of processing both wafers and single (prototype) sensors direly needed

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

- In-vacuum detector head j
 - sensor

 Several hundred LVDS control & data lines, are (re)distributed here

Includes sensor biasing board

- Sensor will be cooled to ~ -30°C
- 2-side buttable

movable

PowerBoard for sensor supply & biasing

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

- Carrier board hosts 🥰
- - FPGA running finite state machine
 - Mezzanine board • (also AGIPD, Lambda) reordering data for easier processing streaming out 20 Gbit/s data
 - Interface to slow control, facility information, trigger

Mezzanine for data streamout shared by AGIPD, LAMBDA, and Percival

P2M System

Currently undergoing benchtop tests in front-illuminated configuration

CMOS (RAL)

Control & DAQ

- 20 Gbit/s from one sensor • (reading full images: 300 Hz, 2M pixels, 30 bit/pixel incl. CDS)
- Virtual hdf5 developed in part for this project ٠
- Python interface & Odin GUI interface
- API for link to Tango, DOOCs, EPICS, etc. ٠

DESY.

SOL FII

- Software Framework for Characterization
 - Data validation ٠
 - Calibration constants •
 - Sensor characterization
- Testing

DESY. | The PERCIVAL soft X-ray Detector | Jonathan Correa, Feb. 26th 2019, TREDI, Trento

Prototype Performance - Noise

Noise

- reasonably low parameter dispersion between different samples (and wafers)
- Noise below Poisson limit
- preliminary tests indicate ~10 e⁻ rms reachable by multiple sampling

Prototype Performance

Gains

- Automatic gain adjustment works
- 3 gains accessible via overflow switch architecture
- Dynamic range to 3.5 Me⁻ i.e. 50k photons at 250eV

Prototype Performance

Backside-illuminated (BSI)

- Imaging at 92 eV, single-shot at FLASH
- Airy rings matching output
- CCE (lower limit to QE) measured at ~70% above 400 eV

P2M Operation

- First light
- Visible light, room temperature
- 100Hz frame rate (stream-out speed of full acquisition system still ramping up)
- Automatic gain switching works
- Deployment. Two more system working and providing, last one at Elettra: 150Hz

DESY. | The PERCIVAL soft X-ray Detector | Jonathan Correa, Feb. 26th 2019, TREDI, Trento

Project Status & Outlook

P2M FSI undergoing bench-top testing & BSI

- P2M system operates, saw first light and demonstrated auto gain switching in response to illumination
- P2M system obtained first results at a beamline in December (P04 @ Petra III). Detailed characterisation and data analysis ongoing
- Chip functionality at 300Hz frame rate demonstrated, full readout & system ramping up

- First BSI tests starting this Friday
- First delta-doped P2M BSI ~ July 2019

Thanks to Percival Collaborators:

P2M FSI undergoing benchtop testing

DESY:

Cornelia Wunderer Alessandro Marras Steve Aplin Peter Goettlicher Frantisek Krivan Manuela Kuhn Sabine Lange Magdalena Niemann Frank Okrent Igor Shevyakov Sergej Smoljanin Manfred Zimmer Heinz Graafsma

RAL:

lain Sedgwick Ben Marsh Nicola Guerrini

Elettra:

Giuseppe Cautero Dario Giuressi Giovanni Pinaroli Luigi Stebel Ralf Menk

C

Diamond:

PAL:

Alan Greer Tim Nicholls Ulrik Pedersen Nicola Tartoni

HyoJung Hyun

Seungyu Rah

KyungSook Kim

Soleil & DESY:

Benjamin Boitrelle

JPL: April D. Jewell Todd J. Jones Michael E. Hoenk Shouleh Nikzad

EMFT: Andreas Drost Christof Landesberger Armin Klumpp

and beamline staff at Petra P04, Elettra TwinMic & CiPo, DLS I10, and Flash BL2 for their support

DESY. | The PERCIVAL soft X-ray Detector | Jonathan Correa, Feb. 26th 2019, TREDI, Trento

Backup Slides

Soft X-ray Challenges – reaching the sensor

Attenuation Length of Photons in Si and SiO₂

At (very) soft X-ray energies, QE is limited by passive window thickness!

e.g. 50 nm of SiO₂: loss of 25% of 250 eV photons

Monolithic Active Pixel Sensor

Monolithic: Collecting diodes & readout circuitry share the same substrate commercial standard 0.18um CMOS techn, over high-resistance thick epi Coupled to handling wafer, back-thinned, back-illuminated: 100% fill factor Back surface delta-doped, post-processed: almost no entrance window

Back-side Illumination

Epi-Layer ($\sim 18 \, \mu m$)

Rest of the Wafer

Epi-Layer ($\sim 12 \, \mu m$)

Oxides and Metal Layers (~ 10 µm)

Carrier Wafer

- > Front-side illuminated (FSI) sensor
- > Photons have to traverse oxides and metals
- > Limited and non-uniform sensitivity to soft X-rays

- > Back-side illuminated (BSI) sensor bonded to carrier wafer
- > High and uniform soft X-ray sensitivity possible
- > Percival prototypes are BSIprocessed at JPL (delta-doping)

Noise vs Poisson Limit

VAL