Percival: a Soft X-Ray Imager for Synchrotron Rings and Free Electron Lasers

Alessandro Marras

on behalf of the Percival Collaboration

Percival goal

development of a 2D pixelated detector for low-energy-X-rays

- primary range 250eV to 1keV (extended: below 100eV~2keV)
- noise low enough to allow 1-photon discrimination (~15e)
- high dynamic range to be compatible with FEL/high flux SR (several Me)
- fast enough to allow 1-shot experiments (120~300 frame/s)
- good detection efficiency

(back-side illumination, thin entrance window)

- many (multi-M) pixels
- with no gaps of blind areas
- reasonably small pixels (27um)

P^ERCIVAL

RCIVAL

P

RCIVAL

P

RCIVAL

P

DAQ, IT, data structure

"because a detector does not end at its ethernet port"

The PERCIVAL system core

Monolithic Active Pixel Sensor TowerJazz 0.18um CMOS technology, over high-resistance thick epi

digital stream. (120-300 frame/s)

Gain sel & ADC (12+1+2)

(Double) Sampling

imaging area

~ 2Mpixel, 4x4 cm²

partially-pinned photodiode

oixel addres

-ninned

first images acquired (FSI)

Back-Side Illuminated system

Back-Side processing

••••CFFI

The PERCIVAL core

P^ERCIVAL

Lateral-Overflow & dynamic range

dyn. range: 3.5Me ~ 50k photons @ 250eV

Lateral-Overflow

SCIENCE

Noise

1-shot operation

Low-Energy photon detection

Low-Energy photon detection

P^ERCIVAL

Percival

Charge Collection Efficiency

P.E.R.C.I.V.A.L.

(Pixellated Energy-Resolving Cmos Imager Versatile And Large)

tests on prototypes

- ✓ Lateral Overflow
- ✓ low noise (~15e)
- ✓ high dynamic range (3.5Me 50k ph.)
- ✓ up to 120 frame/s
 - ✓ compatible most FEL
- ✓ tested 92eV-2KeV

P2M

- 2M pixels (27um pixel pitch)
- ~4×4cm² sensible area
- no gaps, 2-side buttable
- prelim electrical and optical tests
- tested up to 100frame/s (expected: ~300 frame/s)
- FSI under test
- BSI post-process in progress

The Percival collaboration & support

The Percivallians:

A. Marras, H. Graafsma, C.B. Wunderer, J. Correa, P. Goettlicher, M. Khun, S. Lange, F. Okrent, I. Shevyakov, B. Boitrelle, J. Supra, M. Tennert, M. Zimmer

N. Guerrini, B. Marsh, I. Sedgwick, T. Nicholls

G. Cautero, D. Giuressi, A. Khromova, R. Menk, L. Stebel, G. Pinaroli

A. Greer, U. Pedersen, N. Tartoni

H. Hyun, K. Kim, S. Rah

Beamline(s) support:

- *P04 (Petra III)*: S. Klump, F. Scholz, J. Seltmann, J. Viefhaus
- *Twinmic, Cipo (Elettra)*: A. Gianoncelli N. Zema, S. Rinaldi, D. Catone
- *I10 (DLS)*: P. Steadman, M. Sussmuth
- BL2 (FLASH): S. Toleikis, S. Duesterer
- PTB (in BESSY II ring): C. Laubis

JPL acknowledgements:

- A. Jewell, T. Jones, M. Hoenk,
- S. Nikzad

EMFT acknowledgements:

A. Klumpp, A. Drost, C. Landesberger

