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Overview

> Introduction to our group: DESY FS-DS

>Our projects for synchrotron radiation detectors

�LAMBDA project (new photon counting detector)

�High-Z pixel detectors (hard X-ray detectors)

�PERCIVAL project (new low energy detector)

>The European XFEL

�AGIPD project (new integrating detector for XFEL)

>Science example: XPCS@XFEL
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Our  detector development projects

> LAMBDA (Large Area Medipix3-Based Detector Array)

� Photon counting pixel detector module

>High-Z detectors (HiZpad collaboration)

� New semiconductor pixel detectors for hard X-rays

> PERCIVAL (Pixelated Energy Resolving CMOS Imager, 
Versatile And Large)

� Low E (250 eV – 1 keV) imaging detector produced by STFC, 
readout by DESY

> AGIPD (Adaptive Gain Integrating Pixel Detector)

� 2D detector for XFEL, developed with PSI, Uni Hamburg, Uni Bonn

>DSSC (DEPMOS Sensor with Signal Compression)

� XFEL detector project, led by MPI-HLL, Munich
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Other involvements

>CAMP (CFEL-ASG Multi-Purpose) Chamber

� Already in use at LCLS

>Detector and science simulation (HORUS)

>Diamond beam position monitors with RF readout

� Collaboration with ESRF

>Detector loan pool

� Pool of a variety of detectors (Pilatus, Maxipix, CCDs, imaging 
plates, etc.) and associated equipment to support user operation at 
photon sources. 
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Hybrid pixel detectors (counting)

> Pixellated photodiode sensor

> Readout chip with 1 readout channel 
per pixel
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Hybrid pixel detectors (counting)

> Pixellated photodiode sensor

> Readout chip with 1 readout channel 
per pixel

14mm
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Hybrid pixels and X -ray detection

> First generation of X-ray hybrid pixels in use

� Pilatus (Dectris, PSI)

� Maxipix (ESRF, Medipix2 collaboration)

> Advantages

� Single photon counting (“noise free”)

� Fast readout

� Large dynamic range

� Energy discrimination

> Disadvantages

� Pixel-to-pixel variation in electronics (must be calibrated)

� Poor efficiency at high energies

� Problems at high flux rates
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Detector developments at DESY

> Large Area Medipix-Based Detector Array (LAMBDA)

� Large detector modules using new Medipix3 chip

� Small pixel size, fast readout, greater functionality

> “High-Z” semiconductors

� Si has poor absorption efficiency > 20 keV

� Heavier semiconductors (Ge, CdTe, GaAs) allow hard X-ray detection

> PERCIVAL (Pixelated Energy Resolving CMOS Imager, 
Versatile And Large)

� Low E (250 eV – 1 keV) imaging detector produced by STFC, 
readout by DESY

> Adaptive Gain Integrating Pixel Detector (AGIPD)

� Integrating Detector with gain switching

� In-pixel storage for ultra fast imaging at XFEL
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Medipix3 readout chip

> 21 groups in collaboration

� Chip design at CERN

> Successor to Medipix2 (Maxipix)

> 256 * 256 pixels, 55µm

> 2 counters per pixel for deadtime-free 
readout

� Up to 2000 fps with 12 bit counter 
depth

> “Charge summing” circuitry to 
compensate charge sharing effects

� More reliable hit detection

� Better energy discrimination

Charge 
shared 
between 
pixels
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LAMBDA detector head

> Large sensor area

� 2-by-6-chip layout

� 1536*512 pixel, 84 mm * 28 mm

� Set by typical silicon and high-Z 
wafer sizes (6”, 3”)

> Suitable for high-speed readout

> Low-temp operation possible

> Modular design

� Multiple readout chips build a 
single module

� Multiple modules tiled in large 
system

2 “hexa” high-Z sensors
Each 42 mm * 28 mm

1 large Si sensor
84 mm * 28 mm

or 

Voltage reg. 
board

500-pin high 
density 
connector
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First prototype systems

> 4 modules built with “quad” sensors 
(2*2 chip, 512*512 pixels)

> Mechanics with Peltier cooling

> Electronics to one side of sensor (but 
right-angle connector now available)

> Prototype readout board (completed)

� USB2 communication with control PC 
(10 frames per second with large-area 
sensor should be possible)

> High-speed readout

� Common readout mezzanine board 
being developed for LAMBDA, 
PERCIVAL and AGIPD 

� Multiple 10 Gigabit Ethernet links for 
full-speed readout
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Test results so far

> Detectors are working

� Minor improvements needed 
to detector powering

> Currently working on full-size 
sensor and high-speed 
readout
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High -Z materials – X-ray absorption efficiency

MAR345
~2% at 
100keV

> Replacing Si with high-Z 
material could combine hybrid 
pixel advantages with high 
efficiency with hard X-rays

> However, each high-Z 
material has its downsides!

> Our projects:

� Germanium – development with Canberra and IZM (Berlin)

� Cadmium Telluride – HiZPAD consortium (led by ESRF)

� Gallium Arsenide – Russian-German partnership with FMF, KIT, JINR 
(Dubna) and RID Ltd. (Tomsk)
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Germanium sensor production and bump bonding

> Sensor structure (Canberra)

� Modification of existing strip detector 
technology

� 55µm pixels, 700 µm thick

> Indium bump bonding (IZM)

� Sensor and ASIC bonded at T < 100C

� During cooling, ductility of Indium 
compensates for mismatch in contraction

> 2 high purity Ge wafers plus mechanical 
dummies received from Canberra

� 16 Medipix3 singles / wafer

� IZM optimizing process using dummies

� HP Ge bonding follows soon

> Readout and mechanics by DESY 
(LAMDA framework)
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Cadmium Telluride

> HiZPAD (High-Z sensors for Pixel 
Array Detectors)

� EU-funded consortium – 12 institutes 
(led by ESRF)

> CdTe (ZCd,Te = 48, 52, ZSi = 14) 

� Already used in single-element 
detectors / small arrays

� Small wafers (3”), often with 
inhomogeneities

> Tested CdTe sensor with Medipix2 
readout

� 55µm pixel, 256 * 256 array, 1000 µm 
thick

� Tests done at DORIS III - BW5 beam 
line (160 keV photons)
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PERCIVAL project

photodiodes

embedded 
circuitry

handling wafer

backthinned
(~12um) epi Si

board

e-

• Primary energy range 250 eV – 1 keV (will work from <200 eV to few keV)

• 12 µm Si sensitive volume with 25 µm pixels ⇒ 4k × 4k pixel sensor

• 4 sensors in cloverleaf arrangement can make up 64 Mpixel (20cm x 20cm)

• back-illuminated, back-thinned for uniform QE > 90%

• 120 Hz frame rate and lower 

• 2-side buttable (space between active pixel edges on the order of 1mm)

• electronic noise < 15e-, “full well” ~ 20 Me-

• Multi-gain approach to access full dynamic range, 

all gains active all the time

Aspired performance parameters:
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Overview

> Introduction to our group: DESY FS-DS

>Our projects for synchrotron radiation detectors

�LAMBDA project (new photon counting detector)

�High-Z pixel detectors (hard X-ray detectors)

�PERCIVAL project (new low energy detector)

>The European XFEL

�AGIPD project (new integrating detector for XFEL)

>Science example: XPCS@XFEL



The European XFEL

Tunnel:

• 3.4 km long

• 12-44 m deep

17.5 GeV linear electron accelerator

producing 12.4 keV x-rays (tunable) 
through FEL process

unprecedented peak brilliance

user facility: common infrastructure 
shared by many experiments

DESY

Switch Building

(Osdorfer Born)

Experimental Hall 

(Schenefeld)
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• Imaging of tiny structures

• single bio-molecule imaging (or small crystals)

• investigation of nanostructures

• Imaging of ultra fast processes

• filming of chemical reactions

• imaging of changes in magnetization states

• Investigation of extreme states

• highly ionized states in matter

• non-linear interaction of x-rays with each other or other photons

• creation of extremely high pressure/temperature

What can be done at an XFEL?
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Single shot imaging…

e.g. Coherent Diffractive Imaging (CDI or CXI):

K. J. Gaffney and H. N. Chapman, 

Science 8 June 20072/17/12 22J. Becker, Cornell Seminar



…and data reconstruction

Phase reconstruction algorithms to reconstruct real space image

e.g. two cowboys and the sun:

real space image
reconstructed

real space image
diffraction image

K. J. Gaffney and H. N. Chapman, 

Science 8 June 2007
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Special structure of pulse trains:

• 600 µs long pulse trains  at a 

repetition rate of 10 Hz

• Each train consists of 2700 pulses 

with a separation of 220 ns

• Each (SASE) pulse consists of 

≈1012 photons  arriving <100 fs

Beam energy:

• 5 – 25 keV (depends on station)

• 12.4 keV (λ=0.1 nm) nominal design 

energy for AGIPD

XFEL pulse trains
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XFEL Detector requirements

4.5 MHz
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XFEL Detector projects

Three 2D-Detector consortia:

• LPD (Large Pixel Detector)

• 500x500 µm² pixels

• “gapless”

• 3 gains in parallel

• DSSC (DEPMOS Sensor with Signal Compression)

• hexagonal pixels

• very low noise

• non-linear gain

• AGIPD (Adaptive Gain Integrating Pixel Detector)

• 200x200 µm² pixels

• central hole

• adaptive gain switching
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XFEL challenges

XFEL provides

• Simultaneous 

deposition of all  

photons

Challenges

• Single photon 

counting not 

possible

• Dynamic range: 

104 photons/pixel 

with single photon 

sensitivity 

Approach

• Charge integration

• Dynamic gain switching

→ 3 gain stages

→ Single photon sensitivity 

in highest gain

• High number of 

bunches

→ 2700 bunches 

per train (600 µs)

• Reading out of 

single frames 

during pulse 

train impossible

• Analog memory in 

the pixel using the 

≈350 storage cells 

per pixel 
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AGIPD ASIC

Sensor ASIC pixel matrix

ASIC 

periphery
Chip 

output  

driver

Mux

HV

+
-

THR

DAC
SW
CTRL

Analog Mem

Analog Mem

CDS

RO Amp

Calibration circuitry

Adaptive gain amplifier

352 analog memory cells
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Imaging with AGIPD 0.2 prototype
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Specifications:

• 1 Mpixel

• 4 quadrants

• 4 modules per quadrant

→ 1 module: 8 x 2 chips, 

→ 1 chip: 64 x 64 pixels

• 200 x 200 µm2 pixel size

• 500 µm silicon sensor

• Hole for direct beam

• Upgradable to 4 Mpix

The detector layout

quadrant

8 chips

2 chips module

single 

chip
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• Introduction to our group: DESY FS-DS

• Our projects for synchrotron radiation detectors

• LAMBDA project (new photon counting detector)

• High-Z pixel detectors (hard X-ray detectors)

• PERCIVAL project (new low energy detector)

• The European XFEL

• AGIPD project (new integrating detector for XFEL)

• Science example: XPCS@XFEL

Overview
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Scattering on many particles

X-rays
Disordered 

sample

Acts like 

optical grating

Incoherent beam

Coherent beam

Encodes average 

properties of the 

particles

Additionally 

encodes position 

of each particle as 

‘speckles’ on the 

average valueChanges in the positions of the 

scattering particles change the 

positions of the speckles
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How XPCS is performed

• Probe sample sequentially 

with non-destructive XFEL 

pulses

• Analyze image series using 

intensity autocorrelation

(g2 function)

• Functional form 

determined by interaction 

mechanism

• Extract time constant Non-destructiveness requires large 

low intensity XFEL pulses 

-> resulting speckles will be small
2/17/12 33J. Becker, Cornell Seminar



The ‘gap’ in accessible time scale

1 ps 1 ns 1 µs 1 ms 1 s

Split and delay technique

Sequential XPCS

XFEL train length

Limited by propagation 

delay (distance)

Limited by detector 

readout speed and flux

Detector performance?

Diffusive atomic 

motion

Dynamics of small 

clusters

Slow dynamics in 

colloids, alloys etc.

Fast dynamics in 

colloids, alloys etc.

Dynamics of small 

particles, large clusters
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• 4 µrad angular resolution

→ 40 µm pixel size at 10m distance

X AGIPD Pixel size is 200 µm

• Single photon sensitivity

� Provided by AGIPD

• Very high frame rate 

� Single pulse imaging possible with AGIPD

• Acquisition of image sequence

� More than 350 images stored per train

Detector requirements for XPCS

2/17/12 35J. Becker, Cornell Seminar



• Linear sequence of 350 

images 

• 350 logarithmic samples 

of 2700 pulses

• Realistic Q dependence 

due to 3D real space 

model 

Key simulation parameters

AGIPD storage is limited to 

350 of 2700 frames. 

What is the best sampling 

scheme?
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XPCS SNR (not photon SNR!)

4 regions identified:

A) Saturation ∝ �

B) ‘Better than 

expected’

C) Non saturated high 

intensity results of first 

study

D) Low intensity results 

of first study / analytic 

expression

Oscillations due to intensity variations 

(form factor) not noise!
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Relative performance penalty

Simulations show 

penalty not as big 

as expected, but 

still no benefit

Analytic XPCS SNR considerations show no benefit
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Relative error on relaxation rate

Compared to linear scheme 

the log scheme provides:

Access to secondary 

dynamics due to larger time 

base

Lower errors for slow 

dynamics (low Q)

Larger errors for fast 

dynamics (large Q)
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Diffusion constant

‘Measurement’ results 

of diffusion constant 

are equal within their 

respective errors

Errors for lin/log 

sampling are similar 

(for this sample)
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• XPCS insensitive to FEL fluctuations (not shown)

• Logarithmic sampling advantageous for studies 

of ‘slower’ dynamics (low Q, τ �� 1	�	)

• Linear sampling advantageous for studies of 

‘faster’ dynamics (high Q, τ �� 1	μ	)

Conclusions XPCS study
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• Exciting new projects 

• LAMBDA (large area modules, 55 µm pixels, 2 kHz 

frame rate)

• HiZ (Direct detection imaging at high energies)

• PERCIVAL (low energy imaging with 25 µm pixels)

• AGIPD (4.5 Mhz imaging at XFEL)

• Exciting new opportunities at XFEL

• Extremely fast (<100 fs pulse duration)

• Extremely bright (single molecule diffraction)

• Extremely challenging

Summary
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Backup
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• Investigation of fluctuations in diffraction images

• Scientific case XPCS@XFEL: molecular dynamics in 
fluids, charge & spin dynamics in crystalline materials, 
atomic diffusion, phonons, pump-probe XPCS 

What is XPCS?

Real space Log(Intensity) in 

detector plane
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Figures of merit (II)

The signal to noise 

ratio is derived from 

the dispersion of g2 

values (blue arrow)

�� ≝
�� � 1

��� ��

The relative error of 

the correlation 

constant is the error 

of fit result (violet 

arrow)
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Calculate intensity autocorrelation function (g2) 

per pixel

Sequential mode (constant ∆t between frames)

Data evaluation

n: number of the individual pixel, identifying Q vector Q(n)

k: integer number, identifying lag time  τ=k∆t

F: number of acquired frames

<In>: average (over all frames) pixel value
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DAQ architecture

2D pixel FEE

Train builder

PC layer

Data cache

PCs

PCs

Archive silos

F
E

I

1D FEE camera

F
E

I

F
E

I

Train builder?

PC layer

Data cache

PCs

. . . .

switchswitch

net. switch net. switch

. . . .

10 GE TCP

10 GE UDP

DESY IT standard

custom

TCP, FC, 
Infiniband
…

C. Youngman, S. Esanov

•Front End Electronics (FEE)
•Front End Interface (FEI)

•interface to Train Builder
•integrated in 2D

•Train builder layer 
•builds trains
•simple data processing

•PC layer
•interface to cache
•additional train building
•more complex data process

•Data cache
•hold, analyze, reduce and 
reject data
•post processing 
•commit to silo
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