"Future Developments and Challenges of Pixel Detectors"

Hybrid Pixel Array Detectors (HPAD)

- Other solutions:
 - Monolithic Active Pixel Sensors
 (MAPS)
 - Silicon-on-Insulator (Sol)

Schematic layout of a Hybrid Pixel Array Detector (HPAD)

Step 1: Sensor

- ➤ Current sensors have insensitive areas around the edges (why?) → loss of data.
- ➤ Current sensors: simple diodes (why?) → function absorb energy from the particle and create electron-hole pairs.
- > Current sensors are made of silicon (why?)
- Could we do better? How?

Schematic layout of a Hybrid Pixel Array Detector (HPAD)

Active edge or stealth dicing

3D active edge

planar detector + dopant
 diffused in D-RIE etched edge
 then doped
 (C. Kenney 1997).

Back plane physically extends at the edge.

Active volume enclosed by an electrode: "active edge"

Sensors: Active or Smart

- 1. Increase the signal; amplifying sensors:
 - > Gas filled detectors (GEM foils, MicroMegas, etc.)
 - > Avalanche Photo-Diode arrays and Silicon PMTs

Sensors: Active or Smart

- 2. Decrease the noise:
 - > Example DEPFET (with signal compression)

DEPMOS Sensor with Signal Compression

DEPFET: Electrons are collected in a storage well

 \Rightarrow Influence current from source to drain

injected charge

Summary Sensors

- Silicon is "perfect" material and therefore hard to beat, also large industry behind.
- New sensors with no dead areas around edges (edgeless, or edge-sensitive), or with 3Dstructures
 no more dead areas.
- New materials:
 - DIAMOND (large bandgap → no need for cooling. Also more radiation hard.
 - High-Z sensors (Cd(Zn)Te; Ge) for photon science (medical)
- Smart sensors: Amplifying for higher signal; or low capacitance for lower noise.

Schematic layout of a Hybrid Pixel Array Detector (HPAD)

Step 2: Readout ASIC for HPADs

- Most ASICs have limited or no "intelligence" in the pixel.
- Current ASICs treat pixels as independent detectors/channels.
- Conflict between small pixel size and large functionality.
- Conflict between power consumption (=heat production) and speed and functionality.
- > Can we do better?

The Adaptive Gain Integrating Pixel Detector

High dynamic range:

Dynamically gain switching system

Dynamic Gain Switching works!

Medipix3 – charge summing concept

H. Graafsma | EDIT School, CERN; 2011 | Page 15

DIGITAL CIRCUITRY

- 4. Control logic (124)
- 5. 2x15bit counters / shift registers (480)
- 6. Configuration latches (152)
- 7. Arbitration circuits (100)

Total digital 856

ANALOG CIRCUITRY

- 1. Preamplifier (24)
- 2. Shaper (134)
- 3. Discriminators and Threshold Adjustment Circuits (72)
- Total analog 230

Electron bunch trains; up to 2700 bunches in 600 μ sec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 27 000 bunches per second).

The Adaptive Gain Integrating Pixel Detector

High dynamic range:

Dynamically gain switching system

Schematic layout of a Hybrid Pixel Array Detector (HPAD)

Technology enablers: Wafer thinning

Technology:

- rough/fine grinding, dry/wet etch at wafer level
- Si, glass, GaAs, ...
- critical: thinning damage, impact on devices
- very thin wafers (< 100 um): use of carrier wafers and temporary (de-)bonding technology

Features:

- thinning down to 15 um
- total thickness variation < 1 um

Advantages/Applications:

- thin (3D) integration
- embedding in flexible substrates
- backside illuminated imagers
- ultra low X₀ -> tracking detectors

imec

Technology enablers: TSV processing during CMOS process

Technology:

- fabrication at device level, i.e. as a part of (CMOS) flow
- after FEOL, before BEOL
- will become established in advanced CMOS foundries (core partners, e.g. TSMC, Matsushita, Intel, Micron, ...) participate in 3D IC work at IMEC

Specifications:

- Si thickness: 10 20 um
- via diameter: 3 5 um
- via pitch: 10 um

Applications:

- Pixel level interconnect
- imager/processor/logic/memory stacking

23

Conclusions & outlook II

- High sensitivity by extreme thinning and backside illumination
- 3D integration technology will allow manufacturing of advanced detection systems:
 - complex imaging detectors using high density 3D interconnects (≥1 per pixel) between different intelligent layers: detection layer

Economical aspects:

- (large) commercial foundries will offer 3D in (near) future
- But: typically large volume
- Solution: IMEC prototyping/small scale production "CMORE"

52

Schematic layout of a Hybrid Pixel Array Detector (HPAD)

Detector systems: RelaxD: tilable X-ray imagers

- Issue: bad pixels at imager boundary due to damage by dicing
- Solution: edgeless detector concept:

ANalytical

 Replace dicing by trench etching and proper passivation

Status:

- 3D integration ongoing
- minimal dead area by trench singulation and in situ passivation

Other very promising options: CMOS (MAPS)

Pixel Sensors for HEP

CMOS Sensors: Main Features

p-type low-resistivity Si hosting n-type "charge collectors"

- signal created in epitaxial layer (low doping):
 - Q \sim 80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$
- charge sensing through n-well/p-epi junction
- excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

Specific advantages of CMOS sensors:

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \sim 30–40 μm permitted
- ♦ Standard, massive production, fabrication technology —→ cheap, fast turn-over
- ♦ Room temperature operation
- Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed and power dissipation
 - \bowtie Very thin sensitive volume \rightarrow impact on signal magnitude (mV !)
 - \bowtie Sensitive volume almost undepleted \rightarrowtail impact on radiation tolerance & speed
 - M Commercial fabrication (parameters) → impact on sensing performances & radiation tolerance

Other very promising options: Silicon-on-Insulators (Sol)

Summary Future and Challenges Pixel Detectors.

- > New sensor materials (diamond, High-Z).
- > New sensor structures: 3D, edgeless, ...
- > 3D ASICs (staking ASICs together): increased functionality per area.
- > 3D intergration to avoid dead areas.
- Monolithic Active Pixel Sensors (MAPS/CMOS)
- Silicon-on-Insulator (SoI)
- Maybe more exotic electronics: nano-tubes, organics?
- > But challenges: thermal management, affordability, radiation tollerance, ..

The Future depends on you !

