Development of high-Z sensors for pixel array detectors

David Pennicard, DESY
Heinz Graafsma, Sabine Sengelmann, Sergej Smoljanin, Helmut Hirsemann, Peter Goettlicher

Vertex 2010, Loch Lomond, 6-11 June 2010
Development of high-Z sensors for pixel array detectors

- Applications of high-Z pixel arrays
- Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- Work on pixellated Ge sensors at DESY
- Summary
High-Z materials for X-ray absorption

X-ray absorption / interaction

Proportion absorbed / interacting

- Silicon (500um)
- Ge / GaAs (500um)
- CdTe (500um)

X-ray energy (keV)

Z=13
Z≈32
Z≈50
High-Z materials for X-ray absorption

X-ray absorption / interaction

- Silicon (500um)
- Ge / GaAs (500um)
- CdTe (500um)

Proportion absorbed / interacting

X-ray energy (keV)

- Z=13
- Z≈32
- Z≈50

- 7μm Fe, 2 mm H₂O
- 400μm Fe, 4 cm H₂O
- 4 mm Fe
PETRA-III at DESY
- Beamline energies to 150keV (mostly 50keV)
- Materials science apps

High-E scattering and tomography
- Structure at buried interfaces, grain mapping...

Most promising application
- Si pixels already successful
- Tolerance of expense and infrastructure
Imaging with a high-E, broad spectrum source

- 15-25 keV mammography
- 30-120 keV torso

Hybrid pixels allow energy measurement

- Distinguish tissue, bone, contrast

Biological research (small animal)

Medical imaging

- Cost / infrastructure
- Tiling of large areas

Johnson 2007 - Material differentiation by dual energy CT: initial experience
Collaborations

> **HiZPAD (Hi-Z sensors for Pixel Array Detectors)**
 - ESRF (coordinator), CNRS/D2AM, DESY, DLS, ELETTRA, PSI/SLS, SOLEIL
 - CPPM, RAL, University of Freiburg FMF, University of Surrey, DECTRIS
 - Predominantly processing / bonding / testing of commercial CdTe, CZT

> **Medipix3**
 - See Richard Plackett’s talk
 - *Inter-pixel communication* allows thick high-Z sensors
Development of high-Z sensors for pixel array detectors

- Applications of high-Z pixel arrays
- **Overview of high-Z sensors**
 - CdTe / CZT
 - GaAs
- Work on pixellated Ge sensors at DESY
- Summary
Which high-Z material to use?

X-ray absorption / interaction

Proportion absorbed / interacting

X-ray energy (keV)

- Red: Silicon (500um)
- Yellow: Ge / GaAs (500um)
- Blue: CdTe (500um)
Fluorescence effects

> Absorption by k-shell can produce high-E fluorescence photons
 - >~30keV for CdTe
 - >~10keV for GaAs and Ge

> Degrades performance above k-shell E

> Effect greater in higher-Z material
 - Higher fluorescence yield
 - Longer absorption lengths

> Inter-pixel communication could compensate

![Diagram of 40keV photon in CdTe](image-url)
Fluorescence effects

- Absorption by k-shell can produce high-E fluorescence photons
 - >~30keV for CdTe
 - >~10keV for GaAs and Ge
- Degrades performance above k-shell E
- Effect greater in higher-Z material
 - Higher fluorescence yield
 - Longer absorption lengths
- Inter-pixel communication could compensate
General issues with high-Z sensors

> (Mostly) compound semiconductors
> Material quality
 - Charge trapping – one carrier produces most of signal
 - Leakage current, resistivity
> Material homogeneity and area
 - Grain boundaries – want single crystal
 - Dislocations, inclusions
> Pixellation
 - Diode, Schottky, resistive...
> Bump bonding
 - Temperature tolerance
Cadmium Telluride

> Used for γ-ray spectroscopy
> Commercially-grown wafers:
 - Single-crystal now 3”, 1mm-thick
 - Defects affect uniformity
> Properties
 - 1.44eV bandgap (room T)
 - High resistivity
 - \(\mu_e T_e \approx 3 \times 10^{-3} \text{ cm}^2/\text{V} \)
 - Mean drift distance of cm
 - Use electron readout!
 - \(\mu_h T_h \approx 2 \times 10^{-4} \text{ cm}^2/\text{V} \)
 - Mean drift distance of mm

Szeles 2003, CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications
Cadmium Telluride

> Used for γ-ray spectroscopy

> Commercially-grown wafers:
 - Single-crystal now 3”, 1mm-thick
 - Defects affect uniformity

> Properties
 - 1.44eV bandgap (room T)
 - High resistivity
 - $\mu_e T_e \sim 3 \times 10^{-3} \text{ cm}^2/\text{V}$
 - Mean drift distance of cm
 - *Use electron readout!*
 - $\mu_h T_h \sim 2 \times 10^{-4} \text{ cm}^2/\text{V}$
 - Mean drift distance of mm

Cadmium Telluride

- Typically use Schottky or ohmic contacts (Pt, Au, In)
- Temperatures above 200°C degrade transport properties
 - Low temp sputtering / electroless deposition of contacts
- Low-temp bump bonding (Pb/Sn, In)
 - CdTe relatively fragile
- Demonstrated with Medipix2, XPAD3
CdTe Medipix2 Assemblies

1mm CdTe (Acrorad, 3”)
- Ohmic pixel contacts

QUAD (2x2) 110 µm pixel pitch
28x28 mm² active area
Flat field corrected

Hexa (2x3) 55 µm pixel pitch
28x43 mm² active area, 390,000 pixels
Flat field & filter

Produced by
A. Fauler, A. Zwerger, M. Fiederle
Freiburger Materialforschungszentrum FMF
Albert-Ludwigs-Universität Freiburg
CdZnTe

> Typically Cd$_{0.9}$Zn$_{0.1}$Te
 - Increased bandgap (1.57eV) – lower current
 - Better single-element spectroscopic performance

> Produced in large polycrystalline ingots
 - Crystal properties vary between grains
 - Good single-crystal segments up to 20*20mm2
Gallium Arsenide

- Better single-crystal production (6”)
- 1.43eV bandgap (low leakage)
- $\mu_e >> \mu_h$
 - Short hole mean drift distance (100’s of μm)
 - Rely on electron readout
- Problem: Shallow defects – low resistivity
- Semi-insulating GaAs
 - Compensation of shallow defects
 - Operated as photoconductor / Schottky
- Epitaxial GaAs
 - Growth with fewer shallow defects
 - Operated as diode
Gallium Arsenide – Semi insulating

> As-rich growth produces deep defects (EL2)
 - Compensate shallow traps
 - But reduce electron lifetime (~1ns)

> **Cr** compensation promising
 - Dope n-type during growth, then overcompensate p-type with Cr diffusion

> Metallised contacts
 - Au for photoconductor (right)
 - Pt-Ti-Au for Schottky

> Moderate temp tolerance, physically fragile
 - Bonding at low temp
 - Indium / low T solder

JINR Dubna, Tomsk State University
Chromium-compensated GaAs

> Medipix2
> 300µm thick (1mm possible)
 - Photoconductive sensor
 - Operated at 500V here
> Full active volume, 90% CCE

L. Tlustos (CERN), Georgy Shekov (JINR Dubna), Oleg P. Tolbanov (Tomsk State University)
“Characterisation of a GaAs(Cr) Medipix2 hybrid pixel detector”, IWorld 2009
Epitaxial GaAs

> VPE growth of GaAs substrate
 - P-i-n structure grown
 - Etching of mesa to form pixels
 - Thinning of material before bonding

> Thickness limited
 - 140μm sensor required cooling to -20°C

Kostamo 2008, “GaAs Medipix2 hybrid pixel detector”
Development of high-Z sensors for pixel array detectors

- Applications of high-Z pixel arrays
- Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- Work on pixellated Ge sensors at DESY
- Summary
Germanium pixels

- High-purity, high uniformity 95mm Ge wafers available
 - Negligible trapping
 - Low doping
- Narrow bandgap means cooled operation needed
 - *Per pixel* current must be within ROC limits (order of nA)
 - Est. -50°C operation with Medipix3 (55μm)
 - Need to consider thermal contraction, etc.
 - "Engineering problems"
- Fine pixellation and bump-bonding must be developed
Pixel detector production at Canberra (Lingolsheim)

> Diodes produced by lithography (p-on-n)
 - Thinned germanium wafer (0.5-1.5mm)
 - Li diffused ohmic back contact
 - Boron implanted pixels
 - Passivation, Al metallisation

> Plan 55μm, 110μm and 165μm Medipix3
 - First run singles (14*14mm²), 500μm
 - Second run 2*3 (28*42mm²)
 - Option of thicker Ge

M Lampert, M Zivic, J Beau
Bump bonding at Fraunhofer IZM (Berlin)

- Low temp bonding required
- Bonds must tolerate thermal contraction
 - 3.5μm max displacement for ΔT=100K
 - In remains ductile at LN₂!
- Indium bump bonding
 - Bumps on ASIC and sensor
 - Thermosonic compression at low T
 - Possible reflow above 156°C
- Currently performing tests on Ge diodes
Medipix3 module readout

> 2*6 chip module (28*85mm)
 - Tilable
 - Full-parallel readout (2000fps)
> Cooling through thermal vias
 - Ceramic and heat spreader match Ge CTE
> Readout FPGA board
 - 10 GBE for high-speed readout
 - Improved infrastructure needed
Conclusions

> Demand for high-Z hybrid pixels
 - Material science, biology / medicine, astronomy...

> Promising results from CdTe / CZT, GaAs
 - Commercial CdTe / CZT improving
 - Improved GaAs compensation

> Ge pixels could provide high-uniformity sensors (albeit without room-temp operation)
Thanks for listening
What do hybrid pixels offer?

> Current generation (Pilatus, Medipix2, XPAD2/3)
 - Noise rejection (photon counting)
 - High speed
 - Direct detection for small PSF

> Future detectors (Eiger, Medipix3, XPAD3+)
 - Deadtime-free readout
 - Inter-pixel communication (Medipix3)
 • Correct for charge sharing
 • Allows use of thick sensors
 - Energy measurement
 • Medipix3 provides 2 or 8 bins (55μm or 110μm)
> 256 * 256 pixels, 55µm pitch
 ▪ 14.1 * 14.1 mm² area
> Photon counting
> 2 counters / pixel (12bit)
 ▪ Continuous R/W
 ▪ or 2 energy bins
> Charge summing mode
> Optional 110µm pixels
 ▪ 8 energy bins
> 2000fps
 ▪ More with reduced counter depth
Medipix3

- 256 * 256 pixels, 55µm pitch
 - 14.1 * 14.1 mm² area
- Photon counting
- 2 counters / pixel (12bit)
 - Continuous R/W
 - or 2 energy bins
- Charge summing mode
- Optional 110µm pixels
 - 8 energy bins
- 2000fps
 - More with reduced counter depth

Signal summing at nodes:
Node with highest signal “wins”
Medipix3 circuitry

2 counters allow continuous read-write
Effects of charge sharing

- Loss of efficiency at pixel corners
 - Typically, set threshold to E/2 with mono beam
- Loss of energy resolution
Medipix3 charge summing mode

> Allows large sensor thickness while maintaining energy resolution

 - No efficiency loss unless charge cloud > pixel size
Alternative methods of processing Ge

- Mechanical segmentation of contacts
 - Frequently used for large sensors
 - Limits on pitch
- Amorphous Ge contacts (e.g. LBNL, LLNL)
 - Similar to Schottky
 - Higher leakage current
 - *but* allows double-sided strips