





# Radiation Damage Studies of Si-Sensors for the XFEL

E.Fretwurst, R.Klanner, H.Perrey, I.Pintilie<sup>\*)</sup>, A.Srivastava, T.Theedt (Univ. Hamburg, <sup>\*)</sup>National Inst. Materials, Romania)

- 1. Why ? XFEL Requirements
- 2. Irradiation Facility at DORIS
- 3. Test Structures Measurement Techniques
- 4. Results
- 5. Summary and Outlook

also supported by:





European Symposium on Solid State Detectors - 10 June 2009





1.X-FEL Requirements (for imaging Si-pixel detectors)

Integrated 12 keV photon flux up to 10<sup>16</sup>cm<sup>-2</sup> (1GGy)

 $\rightarrow$  no bulk damage expected (threshold 300 keV), but

- built-up of oxide charges
- built-up of Si-SiO<sub>2</sub> interface states

 $\rightarrow$  change of field distribution (device stability)

- $\rightarrow$  dark current  $\rightarrow$  noise + impact on read-out electronics
- aims: determine relevant parameters for device simulations
  - predict detector performance vs. dose

Instantaneous (tens of fs) 12 keV photon flux of 10<sup>5</sup>/pixel

 $\rightarrow$  "plasma effect(s)"  $\rightarrow$  talks by K.Gärtner and J.Becker





## 2. X-ray irradiation facility in F4 beam line at HASYLAB (DORIS)

- energy: 10 keV ( ±5 keV)
- dose rate: 0.5-150 kGy/s (SiO<sub>2</sub>)
- spot size: (2mm × 5mm) + scanning
- sample can be biased
- T-control: (H<sub>2</sub>O room temp.)



CV, IV measurements in hall; CV, IV, TSC, DLTS, etc in HH detector lab@500m



### 3. Test Structure (gated diode) and Measurement Techniques













c)  $CV_{gate}$  vs frequency,  $V_{max}$ , ...

transition from accumulation to inversion

- $\Delta V$  depends on oxide + interface charges
- shape CV-curve (slope) on  $\mathsf{D}_{\mathsf{it}}$
- frequency dependence on  $\mathsf{D}_{\mathsf{it}}$

#### Analysis Method:

- obtain **D**<sub>it</sub> from TSC measurement
- model calculation to predict shift  $\Delta V_{it}$ , shape and frequency dependence of CV-curve
- obtain density of oxide charge ( $N_{ox}$ ) from difference  $\Delta V_{meas} \Delta V_{it}$
- check that CV curves are described





UH H Universität Hamburg

# 4. Results

a) 1<sup>st</sup> "on-line" analysis ~immediately after irradiation



Comment: It has been checked, that decrease is not effect of annealing due to the heating of the sample during irradiation (100 kGy/s = 100 kW/kg → ~0.5 W)



#### b) "Reproducibility" of CV curves

Voltage shift ( $\Delta V$  taken at  $\frac{1}{2} C_{ox}$ ) strongly depends on "history" + "measurement conditions"

- for 0.2 s waiting time  $\Delta t$ : CD23-50, 1 MGy 1. CV for  $V_{qate} 0 \rightarrow -100 V$ 10 kHz 3.5x10<sup>-11</sup> CV for  $V_{qate}$  -100 V  $\rightarrow$  0 2. repeat 1. H3rd=6.5 V 3.0x10<sup>-11</sup> H2nd=2.5 V - for 60 s waiting time  $\Delta t$ : <u>(۲.5x10<sup>-11</sup>)</u> H1st=5 V 3. CV for  $V_{qate}$  0  $\rightarrow$  -100 V Capacitance 2.0x10<sup>-11</sup> CV for  $V_{aate}$  -100 V  $\rightarrow$  0 1.5x10<sup>-11</sup> 0.2s waiting time 1.0x10<sup>-11</sup>  $\rightarrow$  no change of shape CV Ist o— 2nd  $\rightarrow$  1<sup>st</sup> 2<sup>nd</sup> meas, different 5.0x10<sup>-12</sup> 60 s waiting time -**A**— 3rd  $\rightarrow \Delta V$  hysteresis effect 0.0 -25 -20 -15 -10 -45 -40 -35 -30 -60 -55 -50 $\rightarrow \Delta V$  shift depends on  $\Delta t$ V\_ (V)

 $\rightarrow$  CV "history" + "hysteresis effects" + dependence on measurement speed



Universität Hamburg

#### Voltage shift ( $\Delta V$ taken at $\frac{1}{2} C_{ox}$ ) strongly depends on "history" + "measurement conditions"



 $\rightarrow$  CV hysteresis effects + dependence on time biased at inversion

HELMHOLTZ



Voltage shift ( $\Delta V$  taken at  $\frac{1}{2} C_{ox}$ ) strongly depends on "history" + "measurement conditions"

- 1. CV for  $V_{qate} 0 \rightarrow -35 V$
- 2. CV for  $V_{gate}$  -35 V  $\rightarrow$  0
- 3. CV for V<sub>gate</sub> 0  $\rightarrow$  -55 V
- **i**. ....
- n. CV for  $V_{gate}$  –135 V  $\rightarrow$  0
- → no change of shape CV (once inversion reached)
- → both up- and down-branch continued ∆V shift with
   V<sub>max</sub> (no sign of saturation)



 $\rightarrow \Delta V$  dependence on max voltage (at inversion) of CV measurement



10/16





c) Analysis and tentative Interpretation of the Measurements

assume 3 components to describe Si-SiO<sub>2</sub> irradiation effects:

- N<sub>ox</sub>(fix) fixed oxide charges → they just shift ideal CMOS CV-curve → (no bending, no frequency dependence, no dark current)
- N<sub>ox</sub>(mob) mobile oxide charges (close to interface) → shift ideal CMOS CV-curve + responsible for hysteresis effects and other shifts
- D<sub>it</sub> interface traps (integral is N<sub>it</sub>) → shift and bend CV-curve, frequency dependence of CV-curve; responsible for I<sub>ox</sub>

#### attempt to separate the 3 components:

- 1. N<sub>it</sub> and D<sub>it</sub> from TSC-data
- Bring mobile oxide charges in well defined state (30'@80°C) [hope was to remove them does not seem to work] determine from 1<sup>st</sup> CV curve N<sub>ox</sub>(fix) + N<sub>it</sub>
- 3. Simulate shape of CV-curve vs. frequency and compare to measurements
- 4. Obtain  $N_{ox}(mob)$  from CV-curve (with 0.2s waiting time;  $V_{gate} = 0 \rightarrow -80V \rightarrow 0$ )  $\rightarrow NB$  "arbitrary but reproducible definition" of  $N_{ox}(mob)!$
- 5. Verify how well simulation describes measurements
- 6. Check that the results are consistent wit  $\mathbf{I}_{ox}$  measurements

procedure well defined, but arbitrary - may cannoe with more experienceRobert Klanner - Univ. HamburgEuropean Symposium on Solid State Detectors - 10 June 200911/16





## D<sub>it</sub> [cm<sup>-2</sup>eV<sup>-1</sup>] Interface density vs Irradiation dose

(from TSC Thermally Stimulated Current- measurements):



→ significant decrease (1 MGy → 1 GGy) of  $D_{it}$ in particular close to the middle of the band gap, where sensitivity to  $I_{Ox}$  highest







H Universität Hamburg

- d) First results from Annealing Studies:
- So far we: CV, IV and TSC-spectra vs annealing time at 80°C:
  - $\rightarrow$  first preliminary results







- $\rightarrow$  strong annealing effects observed
- $\rightarrow$  still a lot to be understood





- 5. Summary and Outlook
  - (as expected) X-ray radiation damage is complex and its study a time-consuming effort
  - from measurements on gated diodes for doses up to 1 GGy:
    - interface traps: saturate (and even decrease) for doses above 1 MGy
    - fixed oxide charges: saturate (possibly small increase above 1 MGy doses)
    - mobile oxide charges: complex still lots to be understood
  - so far measurements only on unbiased structures
    → study effect of bias
  - results put into sensor simulation ISE-TCAD still to be verified that they agree with data and model simulation
  - annealing studies have started
  - next: irradiate pixel sensors and see if results can be understood on the basis of the data from the test structures put into simulations