
Textmasterformat bearbeiten AGIPD Firmware Development

Qingqing Xia

12st Dec, 2015

Igor Sheviakov

@DESY

Textmasterformat bearbeiten

 VETO Handling
 Data flow diagram

 Train Builder format
 Train header
 Descriptor
 Image Resorting
 Detector Specific
 Train trailer

Multi-Module System
 Summary

Outline

Textmasterformat bearbeiten

Data flow diagram (preliminary & simplified)
IDLE

acquire
first 352
bunches

(regardless
of veto)

Bunch
LUT

(Block RAM)
2700 Enries

bunch_scaler
=352

bunch_scaler
!=351

acquire
all the rest

of
bunches

(veto)

Veto Bunch # train trigger

ASIC Cell_Id

ASIC Cell_Id

ASIC Cell_Id

ASIC Cell_Id

ASIC Cell_Id

Reusable
 Cell Id

FIFO
bunch_scaler
!=2700

read enable

asic cell_Id

 bunch scaler

bunch_scaler
=2700

(0,1,…351)
din

addr

Test Bench Stimulus

Firmware Implementation:
 VETO Handling

Veto: is the bunch reject data encoded on the 99 MHz FEM clock.

Presenter
Presentation Notes
As you may know, veto system is sending us which bunch is vetoed, or in another word which previous bunch is rejected or is bad. In our firmware there is a bunch table. Each time when we acquire memory for a certain bunch we will record the cell id in the correspond bunch entries. So when the vetoed bunch number is coming, we can use this table as a lookup table, to find out which asic memroy cell is used for that bad bunch and put the reusable asic cell id in the FIFO. So that we can reuse the memory for new coming bunches. This is now a standalone implementation, when it’s coming to the C&C system integration, some optimization will be needed to match the XFEL timing. What the import thing I would like to show you is, no matter the machenism, after each bunch train this bunch LUT will look like this.

Textmasterformat bearbeiten

Generated bunch Table

Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

 Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

.

.

.

Bunch #000

Bunch #001
Bunch #002

Bunch #003

Bunch #004

Bunch #005

Bunch #2699

.

.

.

Bunch Table

Firmware Implementation:
 VETO Handling

e.g
0 x 8000 bunch # 0: bad
0 x 0001 bunch # 1: good

Flag=1 VETO(bad)
Flag=0 NO VETO(good)

Presenter
Presentation Notes
This table record for individual bunch which memory cell is used for that bunch. The flag indicate if the bunch was rejected or not. With this generated table we can extracted image meta data and resorting our images at increasing bunch number, which I will show you in a minute.

Textmasterformat bearbeiten

 XFEL Train Format Overview

Firmware Implementation:
 Train Builder(TB) Format

Train header
Metadata of the whole train
(train id, link id, number of

pulses/images)
Image block

Images are sorted with
increasing pulse id,…

Descriptors
metadata of each image within

train
(cell id, pulse id, length, status)

Detector Specific
format not defined
(e.g. bunch table)

Train Trailer
checksum, status

Presenter
Presentation Notes
All the images coming from good bunches. Train trailer to end the train. In the next several slide I will go through the field by on by and to show you what we ‘ve implemented so far.

Textmasterformat bearbeiten

 Size=64Bytes
 Train Id now is a internal counter, later should be

synchronized with C&C system

Firmware Implementation:
 Train Builder(TB) Format

magicNumberBegin MajorTrainFormatVersion MinorTrainFormatVersion

TrainId DataId

LinkId Pulse_Count

aligned to 32bytes

Presenter
Presentation Notes
This is one example train sent from our FPGA to the 10G server. This is the train header residing in the UDP packet caught by the wireshark, which is a network traffic monitor. It’s in the very first udp packet in the train.

Textmasterformat bearbeiten

 Extracting Information

Meta data of images
cell Id, pulse Id, …

Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

 Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

.

.

.

Bunch #000

Bunch #001
Bunch #002

Bunch #003

Bunch #004

Bunch #005

Bunch #2699

.

.

.

Bunch Table

Filtering

&Extracting

In the pulse id order!

Firmware Implementation:
 VETO Handling

Train Descriptors

Flag=1 VETO(bad)
Flag=0 NO VETO(good)

Presenter
Presentation Notes
Construct descriptor. Images stored in the cell id with good bunch should be sent to the backend/train builder. There are two things we can do with the bunch table. We can Construct descriptor, which means extracting the cell id and pulse id of the good bunches and put it in the Secondly we can put the table in the detector specific field in our train output data stream and could be used by experiment user later on.

Textmasterformat bearbeiten

 4 Descriptors: Cell id & Pulse id & Status & Length
 Size: Each descriptor block aligned with 32 bytes (padding

with zeros)
 Example

Cell_Id @ 2Bytes

Pulse_Id @ 8Bytes

Status @ 2Bytes

Length@ 4Bytes
(131072Bytes
 = 0x20000)

Firmware Implementation:
 Train Builder(TB) Format

Example:Pulse_COUNT=18

Presenter
Presentation Notes
Cell id for all the valid images. Pulse_count good bunches . Pulse id for individual images in the train.

Textmasterformat bearbeiten

 Train images sorting

Descriptors:
Cell Id #

Train images
In pulse Id order!

.

.

.

Image buffer #
in DDR2 Memory

 #000
 #001

 #003
 #004

 #002

 #351

1,2,3,16,17…
,155,23,24

 Read buffer #

Firmware Implementation:
 Train Builder(TB) Format

In pulse Id order!

Presenter
Presentation Notes
According to the XFEL specification, the images inside in one train should be with increasing pulse id number. For agipd we first readout all the images from 352 asic memory cells and recording all of them in our local ddr2 memory buffers one by one. Then we use the already extracted cell id in the metadata field as our buffer read number. Since the cell id is in pulse id order, naturally the images is sorted in pulse id order as well and fit the XFEL specification

Textmasterformat bearbeiten

 Train images sorting(separate frames of A,D,A,D,A,D…)

Descriptors:
Cell Id #

Train images
(A&D pair)

In pulse Id order!

 (

.

.

.

Image buffer #
in DDR2 Memory

 #000(A)
 #001(D)

 #003(D)
 #004(A)

 #002(A)

 #703

 Read buffer #

Firmware Implementation:
 Train Builder(TB) Format

In pulse Id order!
 (A)Cell_Id*2
 (D)Cell_Id*2+1

 #005(D)

Cell_0

Cell_1

Cell_2

Cell_351
 #702

Presenter
Presentation Notes
According to the XFEL specification, the images inside in one train should be with increasing pulse id number. For agipd we first readout all the images from 352 asic memory cells and recording all of them in our local ddr2 memory buffers one by one. Then we use the already extracted cell id in the metadata field as our buffer read number. Since the cell id is in pulse id order, naturally the images is sorted in pulse id order as well and fit the XFEL specification

Textmasterformat bearbeiten

 Train images sorting(separate frames : all A, all D)

Descriptors:
Cell Id #

Train images
(A&D pair)

In pulse Id order!

 (
 .

.

.

Image buffer #
in DDR2 Memory

 #000(A)
 #001(A)
 #002(A)

 #703(D)

 Read buffer #

Firmware Implementation:
 Train Builder(TB) Format

In pulse Id order!
 (A)Cell_Id
 (D)Cell_Id+352

Cell_0
Cell_1
Cell_2

Cell_351
 #702(D)

 #0352(D) Cell_0

Presenter
Presentation Notes
According to the XFEL specification, the images inside in one train should be with increasing pulse id number. For agipd we first readout all the images from 352 asic memory cells and recording all of them in our local ddr2 memory buffers one by one. Then we use the already extracted cell id in the metadata field as our buffer read number. Since the cell id is in pulse id order, naturally the images is sorted in pulse id order as well and fit the XFEL specification

Textmasterformat bearbeiten

 Up to Detector
 Bunch table
 other ideas?

Firmware Implementation:
 Train Builder(TB) Format

Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

 Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

Flag ASIC Cell Id

.

.

.

Bunch #000

Bunch #001
Bunch #002

Bunch #003

Bunch #004

Bunch #005

Bunch #2699

.

.

.

Bunch Table

Textmasterformat bearbeiten

 Size=32 bytes
 Checksum(Not clear yet)

magicNumberEnd Status

Checksum

Firmware Implementation:
 Train Builder(TB) Format

Presenter
Presentation Notes
Checksum not clear how to calculate, we’re waiting for XFEL’s specification. Now just filling in with all zeros.

Textmasterformat bearbeiten

Readout FPGA
Board(1)

 Requirements

Multi-Module System

 C&C
System

Control FPGA Board

Readout FPGA
Board(8)

10GE

10GE

…

…
 (bunch table)

 VETO,train id,
…

Bunch table,
 train id,…

Clocks,
readout
 trigger,

Image done,…

1GE

1GE

1GE

Pream-
ble address length cmd data

Protocol: Ctrl FPGA Readout FPGA

serial lines
(clock, data in, data out)

Textmasterformat bearbeiten

 Status
 First Release of Ctrl FW, Readout FW & SW
 Prototype setup (Ctrl FPGA 2x Readout) in two labs(FEA, FS-DS)
 Tested max. number of multi-modules : 4x Readout (hardware availability)

 All 4 simultaneously working modules behavior as expect
 10GE MAC&IP addresses configurable by user SW
 No ASICs Module attached yet: More tests!

Multi-Module System

Textmasterformat bearbeiten

 Status
 Pixel descrambling
 ADC delay automatic adjustment
 Single Module 10GE integration(FW&Tango)
 10GE train data in XFEL Train builder format
 Train Descriptor & Specific filled/generated with bunch table
 10GE Train images can be sorted in increasing Puls Id order
 Multi-module system: Control FPGA 4x Readout FPGA

 Left to do
 Test, Test, Test…
 Multi-module system: ASIC Modules, Complete 8xReadout,
 XFEL Train builder &backend PC

 C&C System Integration XFEL Timing adaption
 Software Integration

Summary

Textmasterformat bearbeiten AGIPD Firmware Development

Thank You!

Textmasterformat bearbeiten AGIPD Firmware Development

Spare Slides

Textmasterformat bearbeiten

 Train images sorting(separate frames : all A, all D)

Descriptors:
Cell Id #

Train images
In pulse Id order!

 (
 .

.

.

Image buffer #
in DDR2 Memory

 #000(A)
 #001(A)
 #002(A)

 #703(D)

 Read buffer #

Firmware Implementation:
 Train Builder(TB) Format

In pulse Id order!
 (A)Cell_Id
 (D)Cell_Id+352

Cell_0
Cell_1
Cell_2

Cell_351
 #702(D)

 #0352(D) Cell_0

Presenter
Presentation Notes
According to the XFEL specification, the images inside in one train should be with increasing pulse id number. For agipd we first readout all the images from 352 asic memory cells and recording all of them in our local ddr2 memory buffers one by one. Then we use the already extracted cell id in the metadata field as our buffer read number. Since the cell id is in pulse id order, naturally the images is sorted in pulse id order as well and fit the XFEL specification

Textmasterformat bearbeiten AGIPD Firmware Development

Pulse Id

Cell Id

Textmasterformat bearbeiten Firmware Implementation:
 VETO Handling

Veto: is the bunch reject data encoded on the 99 MHz FEM clock.

Presenter
Presentation Notes
As you may know, veto system is sending us which bunch is vetoed, or in another word which previous bunch is bad. In our firmware there is a bunch bram. Each time when we acquire memory for a certain bunch we will record the cell id in the correspond bunch entries, where the bunch number is the bram address. So when the vetoed bunch number is coming, we can use this block ram as a lookup table, to find out which asic memroy cell is used for that bad bunch and put the asic cell id in one FIFO. So that we can reuse the memory for new coming bunches. Actually the mechanism here is not the most impostant thing I would like to show you . Because when coming to the clock control system integration, to match the XFEL timing, there will be some optimization needed to match the XFEL Timing.

Textmasterformat bearbeiten Firmware Implementation:
 VETO Handling

Veto: is the bunch reject data encoded on the 99 MHz FEM clock.

Presenter
Presentation Notes
As you may know, veto system is sending us which bunch is vetoed, or in another word which previous bunch is bad. In our firmware there is a bunch bram. Each time when we acquire memory for a certain bunch we will record the cell id in the correspond bunch entries, where the bunch number is the bram address. So when the vetoed bunch number is coming, we can use this block ram as a lookup table, to find out which asic memroy cell is used for that bad bunch and put the asic cell id in one FIFO. So that we can reuse the memory for new coming bunches. Actually the mechanism here is not the most impostant thing I would like to show you . Because when coming to the clock control system integration, to match the XFEL timing, there will be some optimization needed to match the XFEL Timing.

Textmasterformat bearbeiten

 Requirement for 1M System
 Start with Control FPGA 8 x Readout

Firmware Development
 for 1M System

Control FPGA(x1) PC

Power PC
Embedded

System FS
M

 ASIC
Periphery interface

1GbE Monitoring
Control

Application
(extension)

Readout FPGA(x8) PC
AD

C
re

ad
ou

t

ADC Data
& Frame clk

10GbE Image (ADC)
Files

Communication
Lines(vacuum backplane)

Sampling clk

En/Decoder

En/Decoder

10G channel
(DDR2, MAC, XAUI)

 C&C
System

Textmasterformat bearbeiten

 Summary
 Pixel descrambling
 ADC delay automatic adjustment
 Single Module 10GE integration(FW&Tango)
 10GE train data in XFEL Train builder format
 Train Descriptor & Specific filled/generated with bunch table
 10GE Train images can be sorted in increasing Puls Id order
Multi-module system: Control FPGA 4x Readout FPGA

Summary

Textmasterformat bearbeiten

Outlook
 Test, Test, Test…
Multi-module system: ASIC Modules, 8xReadout
 XFEL Train builder & backend PC

 C&C System Integration Timing optimization
 Software Integration

Outlook

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

