

Status of Sensors:

Measurements on the AGIPD Sensors

(from 1st batch to 2nd batch)

<u>Jiaguo Zhang¹</u>, Robert Klanner², Ioannis Kopsalis², and Joern Schwandt²

¹*Photon Science Detector Group (FSDS), DESY* ²*Institute for Experimental Physics, Hamburg University*

Current status

2 deliveries from Sintef

- 1st batch with 20 wafers (2 sensors/wafer) received in Feb. 2013
- Radiation hardness for 1st batch proven up to 100 MGy \rightarrow saturation observed at ~ 1 MGy
- 5 wafers from 1st batch packaged and sent to PSI for bump bonding by Dec. 2013, residual test structures after UBM and Indium deposition processes received in Hamburg
- 2nd batch with 25 wafers received in Nov. 2013 (2 wafers with additional wet oxidation),
 2 wafers cut for sensor quality test and verification of radiation hardness
- Sensor/Wafer quality investigated for 1st and 2nd batch and compared to specification

Specifications

	Parameter	Value	Comments			
	mechanical					
	dimensions (distance between	107,650±5 μm				
	centres of scribe lines)	x 28,050±5 μm				
	mechanical thickness	500±20 μm	mounting tolerances, X-ray conv. efficiency			
$\square $	flatness (sensors after cutting)	< 20 µm	bump bonding, value to be discussed			
٢.	distance pixel edge to cut edge	1200 µm	dead space for science			
	electrical@20°C [vac	uum and air(<25%	<pre>b humidity); 0 to 1 GGy X-ray dose]</pre>			
	n doping	3-8 kΩ·cm	depletion voltage, sideway depletion at edges			
	dead layer n ⁺ -side	$< 0.5 \ \mu m Al$	minimize, but no compromise on breakdown;			
		$< 1 \ \mu m n^{+} Si$	values to be discussed			
	doping non-uniformity	< 10%	distortions in charge collection			
	pixel dimensions	200 x 200 μm	see sensor design			
	nominal operating voltage	500 V				
	breakdown voltage	>900 V	Sensor should operate stably at > 900 V			
Γ.			high voltage option for high photon densities;			
			mounting, pulse shape, dead space at edges;			
			details of guard-ring design to be discussed			
	pad layout		bump bonding, capacitance; see sensor design			
	coupling type@500V	DC				
	inter-pixel capacitance@500V	500 fF	noise, cross-talk			
	total dark current sensor@500V	50 µA	power			
	max. dark current/pixel@500V	50 nA	noise, operation of read-out ASIC			
	max. dark current CCR@500V	20 µA				
,	passivation	irradiation, environmental effects to be discussed				
	electrical@20°C [vacuum and air(<25% humidity); unirradiated]					
	dark current sensor@500V	200 nA	quality Si-bulk and technology			
	max. dark curr./pixel@500V	20 nA	quality Si-bulk and technology			
	max. dark curr. CCR@500V	200 nA	quality Si-bulk and technology			

Sensor flatness

- Flatness measurements:
 - Fit to a plane for individual sensor: deviation slightly higher than specification of 20 μm
 - Radius of curvature: ~ 100 m
 - Max. force on a bond pad (0.01 0.1 mN)
 << force needed for bonding (6 mN/bond) and de-bonding (2 mN/bond), thus not a problem!
 No problem found so far during bump bonding!

Doping concentration

5.05 (mm)

- Doping, resistivity and its uniformity:
 - Direct determination from C-V measurement on diode
 - Doping/Resistivity calculated from depletion voltage, profile from 1/C²(V)

− 1st batch: V_{dep} ~ 95 V → N_d ~ 5.3x10¹¹ cm⁻³ & ρ ~ 7.9 kΩ·cm

 $- 2^{nd} \text{ batch: } V_{dep} \sim 105 \text{ V} \rightarrow N_d \sim 6.0 \times 10^{11} \text{ cm}^{-3} \text{ \& } \rho \sim 7.0 \text{ k}\Omega \cdot \text{cm} \rightarrow \text{slight increase}$

- C_{int} decreases with bias voltage and saturates before V_{dep}
- 1st batch: C_{int} @500 V ~ 102 fF; 2nd batch: C_{int} @500V ~ 98 fF
- No significant change of C_{int} after irradiation

Sensor current

- Total current of AGIPD sensor:
 - Determined from test sensor with 7x7 pixels \rightarrow scaled to AGIPD sensor
 - Measurements done before and after irradiation

- Before irradiation: Sensor current ~ 25 nA@500 V, minor difference w/wo cutting
- After irradiation: Sensor current increases with bias voltage but all currents < 50 μA

CCR current

- CCR current of AGIPD sensor:
 - Determined from test sensor with 7x7 pixels \rightarrow scaled to AGIPD CCR
 - Measurements done before and after irradiation

- Before irradiation: CCR current ~ 15 nA/21 nA@500 V wo/w cutting; no soft breakdown observed for 2nd batch after cutting ← resistivity
- After irradiation: CCR current increases with bias voltage but all currents < 20 μA

CCR current

- Before irradiation: CCR current ~ 15 nA/21 nA@500 V wo/w cutting; no soft breakdown observed for 2nd batch after cutting ← resistivity
- After irradiation: CCR current increases with bias voltage but all currents < 20 μA

 N_{ox} and J_{surf}

- Oxide charges and surface current:
 - Oxide charges determined from MOS-C
 - Surface current from GCD with 4 V bias

1st batch: Slight increase of J_{surf} after bonding process, but negligible change in N_{ox}

- 2^{nd} batch: Lower oxide capacitance → thicker oxide? (250 nm → 266 nm?) Larger inversion capacitance → reason unclear!

3

7 (14%)

• Statistics for the yield of sensors from 1st and 2nd batches:

V_{bd} < 500 V & I(500 V) > 200 nA

	900 V						
		Cat.	Batch-1	Batch-2			
	1	V _{bd} > 900 V & I(900 V) < 200 nA	27 (67.5%)	34 (68%)			
	2	V _{bd} < 900 V & I(900 V) < 200 nA	2 (5%)	2 (4%)			
	3	V _{bd} < 900 V & I(900 V) > 200 nA	11 (27.5%)	14 (28%)			
500 V							
		Cat.	Batch-1	Batch-2			
	1	V _{bd} > 500 V & I(500 V) < 200 nA	32 (80%)	42 (84%)			
	2	V _{bd} < 500 V & I(500 V) < 200 nA	2 (5%)	1 (2%)			

6 (15%)

Reminder: RH effect

- Measurements in normal air with RH > 35%: Be careful!
 - I(V) not reproducible and V_{bd}(RH > 35%) < V_{bd}(RH < 5%) commonly observed \rightarrow similar for irradiated sensors

For non-/irradiated sensors: Reliable operation only in dry atmosphere

 V_{bd} sensitive to RH and time dependence: Currently not a concern for the AGIPD sensors (operation of detector in vacuum)!

Reminder: RH effect

- Measurements in normal air with RH > 35%: Be careful!
 - I(V) not reproducible and $V_{bd}(RH > 35\%) < V_{bd}(RH < 5\%)$ commonly observed

For non-/irradiated sensors: Reliable operation only in dry atmosphere

 In the long term, RH dependence should be understood and improved! (painful for test!)

Reminder: HV protection AGIPD

Sparking of assemblies at high voltages! (lessons learnt from Pilatus)
 - HV sparking between sensor edge and bonded wire/chip (zero potential!)

- Pilatus single assemblies
 (p⁺n sensor + defective ROC)
 tested by T. Rohe and J. Sibille
- Sparking at 500 V
- Two coating (glue):

Araldit \rightarrow No improvement EPO-TEK 301 \rightarrow 700 V

• HV protection has to be taken into consideration in order to achieve > 500 V!

Summary

• 2 batches of AGIPD sensors received from Sintef

Sensor quality:

- (Almost all) specifications met
- Sensor performance (breakdown after cutting) from 2nd batch improved
- 2^{nd} batch shows thicker oxide! and higher doping close to interface? \rightarrow reason unclear so far
- Sensor yield ~ 65-70% for $V_{_{bd}}$ > 900 V

• Next steps:

- Verify radiation hardness of sensors from 2nd batch and 1st batch with additional processes

• Reminders:

- Attention to humidity effects should be paid (may influence test setups)
- HV sparking could be a potential problem for AGIPD operated at high voltages