

Status of the AGIPD calibration activities, calibration concept.

Laura Bianco, DESY AGIPD Consortium Meeting PSI, 03/04/2012

Outlook:

- Challenges of the calibration procedure
- Current options
- Sources & infrastructure needed
- Conclusions

Calibration main challenges:

Large energy range 10⁴ Single photon resolution 4.5 MHz bunch timing (220ns between bunches)

Elements to be characterized :

- 352 cells/pixel
- I Million pixel
- Several points per cell
- 3 gains

~10⁹ variables problem!

Need to optimize the procedure to make it fast and efficient.

Hard to reproduce XFEL conditions without XFEL!

Characterization needed:

- Calibration covering the 3 gain stages to convert ADC units to N of photons
- Droop check for 352 storage cells

Adaptive gain amplifier

352 analog memory cells

Calibration circuitry

Some calibrations will need to be done more often: each experiment: e.g. baseline, take dark images before and after experiments.

Every few experiments: take just selected point to check if some drift occurred.

Every few months (?): droop check depend on radiation therefore should be checked after certain period of exposure.

General re-calibration with more points also from radiation sources. Less frequently or in case some drift is present.

Calibration from ADC units to N of photons

Different calibration strategies will be implemented to take into account accuracy and stability of the calibration and user-friendliness.

Electrical sources & radiation sources, some examples:

Electrical sources	Dedicated calibration circuits for electrical calibration on pixel chip + global injection circuit to characterize over the pixel matrix +
Radiation {	uniform X-ray field which produces a common signal for all pixel and all module

NB : these are preliminary options

Calibration from ADC units to N of photons

Linear behaviour expected

Most points **x** collected with electrical source to extract slope & offset (<u>quick procedure</u>) Fewer points **x** from radiation sources to cross check (<u>slow procedure</u>)

Some options for electrical calibration:

Pulsed capacitor (in pixel voltage step generator) - fast

Current source (on-chip, off-chip (?))

- slow $Q \propto T_{integ}$

Preliminary options

In-Pixel Pulsed Capacitor

In-pixel C pulsed by a inchip (off-pixel) DAC. Possibility of using external voltage source

- $Q = C \Delta V$
- digitally programmable (internal DAC, 8~10 bits), external source possible; choppable in-pixel to Vdd
- can be used for ALL pixels at the same time, OR for matrix subsets (row-col addressable, down to 1 pixel at a time)
- to be used for low charge calibr. (1st gain and beginning 2nd gain)
- to be used for cross-talk estimation
- LIMITED to 200ph

In-Pixel Current Source

In-pixel current source connected to all pixels in parallel through transmission gates

- Q=∫ldt
- digitally programmable (internal DAC, 8~10 bits) up to ~25uA
- when active, current is provided to ALL pixels at the same time
- to be used for fast (parallel) calibration , e.g.:
 - I=10uA, t=100clk@100MHz => ~18000 photons
 - I= 10uA, t=1clk@100MHz => ~180 photons (lowest setting, not many points to cross calibrate with external sources and pulsed capacitor)
 - NEED to be calibrated before use (device-to-device variations)
- Issue: NEED to be verified if usable for low charges (Δt)

External Current Source

- Q=∫ldt
- MUST be connected to 1 pixel at a time
- to be used to cross-check internal sources in different chips expected to be NOT reliable for low charges (Δt , parasitics)

Calibration from ADC units to N of photons

Pulsed capacitor + current source should cover the whole range <u>The more they overlap the better!</u>

Cross check of the calibration obtained with electrical sources:

- Radioactive sources:

- ¹³³Ba (KX-ray photons with energy about 31 and 35 keV)
- ⁵⁵Fe (5.89 keV, 6.49 keV)

alpha sources (to reach higher energies - 2nd gain) :

 ²⁴¹Am alpha en: 5.4 MeV (e.g. commercial source from Ortec: 0.1µCi (3700 counts/sec)

(Issue with radiation sources : low counting rate, long integration time, only 1st gain and half of the second covered).

Maybe use a mask in front of the detector to reproduce point source, (to avoid charge sharing).

 Light source: lamps (issue with the AI coating over the sensor, could be etched away(?). Possible for preliminary tests but difficult for routine checks during operation)

X-ray sources:

-standard x-ray tube to test general performances. Flat field source (possible targets: Cu(8 keV), Mo(17.5 keV), Ag (22 keV)) High power x-ray fluorescence tube

e.g. commercial Amptek Mini-X with Ag target with filter (k_{α} line ~22keV) (10⁶ counts per second/mm² \rightarrow 0.04 counts per microsec/pixel (1 pixel=0.04 mm²) \rightarrow too long integration time to cover the whole energy range (~ up to 250ms! x 10⁴ photons), but still good for some test.

Preliminary options

Characterize the 352 analog cells over 100ms storage time between bunches and correct for possible charge loss effect.

Every few months droop check run, extrapolate new parameters and store it Then use the parameters for on-line correction.

2 choices to do the on-line check:

Parameters (function fit): 4 coeff. x 352 cells x 1M pixel (i.e. two terms exponential function)

Look-up table

P1C1 %	P2C2 %	P3C1 %		
P1C2 %	P2C2 %	P3C2 %		
P1C3 %	P2C3 %			
P1C4 %	P2C4 %			
P1C5 %	P2C5 %			

Parameters (look-up table): 100 points x 352 cells x 1M pixel

Droop and dose

Preliminary analysis:

2 terms exponential fit

Droop and dose

Droop and temperature

2 terms exponential fit

Possible fictitious effects outside the fit intervals (not present with single exponential)

Some indication about timing:

Write: Simultaneously charge i.e. only ¼ of the pixels. Write cell n.1 in all the 1M pixel in 4*220ns=880ns. (~1µs) \rightarrow 1 point of the function Then write cell n.2 in all 1M pixel (another 1µs) To write on all 352 cells \rightarrow 352 µs. To have 10 points in 352 cells: 3520 µs = 3.52 ms.

Read: Read 1 point in all 352 cells of all 1M pixel in 100ms Read 10 points in 352 cells in 1M = 1s

To write and read 10 points in all 352 cells in $1M \rightarrow 1003.52ms \rightarrow \sim 1sec$ (or 100 points in 10 sec...)

This is only to write and read, plus there will be computing time for online correction

Possible other infrastructure needed:

Access to storage ring/beam line (PETRA, FLASH?).
Good to have bunches of photons with the right time structure for test/commissioning (PITZ?).
Also needed for initial general checks (train builder...)

 Electronic detector lab on site (Schenefeld) for routine maintenance and checks

Conclusions

Some preliminary options open to discussion have been presented.

Several calibration structures used in parallel to cover the whole photon range and for (crucial!) cross-calibration.

Thanks!

BACKUP

Droop and temperature 100ms range

