

Next Steps for Sensor Procurement

- Specifications and "optimized" design open issues
- 2. Test-structures
- 3. Next steps
- 4. Conclusions

Specifications of "optimized" design

Parameter	Value	Comments	
mechanical			
dimensions	107,600±50 μm	mounting tolerances	
	x 28,000±50 μm		
mechanical thickness	500±20 μm	mounting tolerances, X-ray conversion	
		efficiency	
flatness	< 20 μm	bump bonding, value to be discussed	
dead region at edges	1200±25 μm	dead space for science	
electrical@20°C [vacuum and air(<25% humidity); 0 to 1 GGy X-ray dose]			
n doping	3-8 kΩ·cm	depletion voltage, sideway depletion at edges	
dead layer n ⁺ -side	< 0.5 µm Al	minimize, but no compromise on breakdown;	
	< 1 µm Si	values to be discussed	
doping non-uniformity	< 10%	distortions in charge collection	
pixel dimensions	200x200 μm	see sensor design	
maximum depletion voltage	350 V	expansion charge cloud for high photon densities	
nominal operating voltage	500 V		
breakdown voltage	>1000 V	Sensor should operate stably at 1000 V	
		high voltage option for high photon densities;	
		mounting, pulse shape, dead space at edges;	
		details of guard-ring design to be discussed	
pad layout		bump bonding, capacitance; see sensor design	
coupling type	DC		
inter-pixel capacitance	500 fF	noise, cross-talk	
total dark current sensor	50 μΑ	power	
max. dark current/pixel	50 nA	noise, operation of read-out ASIC	
max. dark current CCR	2 μΑ	power	
passivation		irradiation, environmental effects to be discussed	
electrical@20°C [vacuum and air(<25% humidity); unirradiated]			
dark current sensor@500V	200 nA	quality Si-bulk and technology	
max. dark curr./pixel@500V	20 nA	quality Si-bulk and technology	
max. dark curr. CCR@500V	200 nA	quality Si-bulk and technology	

- mech. tolerances
- electr. properties
- specs w.o. dose?
- max. dose
- environ. conditions

Parameters of "optimized" design

Geometry: Gap between pixels: 20 µm

Al overhang pixels: 5 µm

Width implantation window pixel: 180 µm

Gap pixel to CCR: 20 μm

Width implantation window CCR: 90 µm

Al overhang CCR: 5 μm

Gap CCR to 1 st guard ring (GR): 12 μm Width of implantation window GR 25 μm

Al overhang left (towards pixel) GR 1, 2, ... 15: 2, 3, ... 16 μ m

Al overhang right (away from pixel) GR 1 – 15: 5 μ m Gap between GR 1-2, 2-3, ... 14-15: 12, 13.5, ... 33 μ m

Bulk resistivity: 5.1 k Ω ·cm (and 3, 8 k Ω ·cm to check effects of possible range)

 p^+ implantation 5x10¹⁵ cm⁻² B, junction depth: 2.4 μ m, lateral extension: 2 μ m

(5x10¹⁵cm⁻² B@70 keV through 200 nm SiO₂; 4h @ 1025°C)

Oxide and passivation SiO₂ field thickness: 250 nm

Oxide charge before irradiation: $5x10^{10}$ cm⁻² Oxide charge after irradiation: $3.0x10^{12}$ cm⁻²

Surface current density before irradiation: $10nA/cm^2$ Surface current density after irradiation: $9 \mu A/cm^2$

Si₃N₄: not simulated

Passivation: not simulated

Neumann boundary conditions on top of oxid

Table 2 Details of the optimized sensor design

Overall + Layout

Comments:

- Number of pixels: (2 rows x 8 columns of ASICs) x (64 x 64 pixels/ASIC) = 128 x 512 = 65 536
- Dimensions of standard pixels: 200 µm x 200 µm
- Dimensions of pixels in between ASICs: 400 μm x 200 μm
- Distance pixel edge to cut: 1200 μm
 [Cutting tolerance: 25 μm (equal to width of the dicing track; 50 μm width of blade is assumed)]

Pixel Layout + Vias

Comments:

- Dimensions of standard pixels: 200 μm x 200 μm
- Width of p⁺ implantation: 180 μm
- Gap between neighboring p⁺ implantation: 20 µm
- Metal overhang: 5 μm
- Position of the center of the opening in the passivation for bump bonding: (100, 30)

- dimensions /no. of vias
- distance between vias
- distance vias to bondpads

Special Pixel Layout

Alignment Marks + Scribe Lines

Pixels at sensor edges

Scribe lines

- layout of scribe lines
- length of scribe lines

Test structures:

A complete set of test structures is available:

- 16 x 16/ 64 x 64 pixel sensors (check radiation damage specifications)
- Various strip sensors (check optimization I-V, C-V, charge losses)
- Strips structures for resistance/capacitance measurements (implants, AI, d_{ox},...)
- MOS C with GR (incl. windows for TCT)
- Pad diodes circular and square (incl. windows for TCT)
- Gate controlled diodes with GR (circular/finger)
- PMOSFET (circular, elliptical)
- Guard ring structures
- Scribe lines
- and more

Next steps: Volume of order

	delivery date from signing of the order	number of working sensors + test structures per delivery
1.	24 weeks	24
2.	36 weeks	36
3.	options for add. sensors	128

- volume,
- packages
- delivery dates
- quality control
- Who ???

Next steps: Vendors

Incomplete list:

- Canberra
- CiS
- Hamamatsu
- Micron
- SINTEF
- -VTT

- number of vendors to address
- information on technology
- demonstrated reliability
- on-site quality control
- available prototypes
- cost
- Who ???

Summary:

- Based on extensive measurements + simulations → sensor design
- After agreeing on open issues → ready for ordering
- Moment that ??? should join UNI-HH effort to assure continuity