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Outline

HORUS

— What'’s that?

— Usage and simulation steps

— Approximations, limitations, etc.

« XPCS simulations
— XPCS what’s that?
— Simple test system
— Parameter space
— Data evaluation
— Results

* QOutlook on next generation of simulations
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What is HORUS?

« HORUS stands for:
Hpad Output Response
fUnction Simulator

e Collection of IDL routines ;

« Designed to evaluate
influences of certain design
choices for AGIPD

Expanded to allow simulations
of photon counting detectors
(Medipix3) by D. Pennicard i
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What HORUS is:

 NO full scale Monte Carlo simulation
— Pseudo analytical treatment of charge transport
— Simplifying assumptions on sensor geometry

— No simulation of surrounding material (Bumps/ASIC/Module
mechanics)

e NOT tested with whole scale AGIPD (not there yet!)

— Simulation results for Medipix match well
— Test results from all recent AGIPD test chips are included

« NOT Bug free
— Most major bugs are fixed
— Works as designed, passed many consistency checks
— ...but you never find the last one
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Design of HORUS

« HORUS is designed as a transparent
end-to-end simulation tool:

— Needs ,input image' containing the number
of photons in each pixel

— Provides an output image, I.e. the number
of detected photons in each pixel

— Simulation parameters/behavior can by
adjusted by the user

— Additional functionality with special
options/workarounds
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Simulation steps

Input image processing,
module definition

. 210 200

 Photon conversion -> %0 968
c 560 150

generates input charge ;o

319 896

« Amplification, gain switching,
CDS simulation

 Treatment of storage cells
 ADC of voltage signals
 Requantization of ADC units

2000 35 .- 160

e Construction of the output
Image
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Module definition

e Simulations are performed on
a ‘per module’ basis

* |Input image is sliced into
pieces

« Each module is an IDL struct
carrying the image information

Module 1

of the current simulation step el
and additional information, like é;
position, gains etc. -
 Number of pixels/ASIC, -
ASICs/module and their i

arrangement is user definable
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Photon conversion

Each photon is treated separately
(MC approach)

« Absorption probability taken into
account (Quantum efficiency, entry
window as dead layer)

 Parallax effect iIs modeled

e Dispersion in actual e,h pairs
created is modeled taking Fano
factor into account

 Charge sharing:

— Independent for each photon
— depth dependent Gaussian

— user-provided Cross-Coupling
Matrix (allows CCE<1, non-uniform
sharing etc.)
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Amplification, gain
switching, CDS simulation

correspondingly
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| storage ~ >
| cells
I i
S P e
Input Vet \H—$$ $|
Amplifier Correlated Analogue

Double

Sampling storage

cells

Noise sampled randomly according to ENC of current gain stage
« Charge injected by gain switching can be added (no data yet)

« Switching thresholds, gains and noise can be set by the user

« Fixed gain operation can be simulated by setting thresholds

e Saturation behavior is unknown, implemented simple clipping to
maximum allowed value, but code is prepared for different models
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Treatment of storage cells

* Fixed leakage (can be
corrected for): each cell
the same each time it is
read

« Random leakage (can not
be corrected for): each
cell different each time it
IS read

 Leakage parameters can
be set by the user

 Code ready to handle
more elaborate models
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ADC of voltage signals

and requantization

 ADC simulation
— Range of ADC taken into account (14 bit)
— Noise of ADC taken into account (4.6 LSB)
— Noise can be modified by the user

e Reqguantization
— Galin stage taken into account
— Values below 0 (due to noise) are clipped to O
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Construction of the
output Image

 Image data of each
module Is assembled
Into one large image

o Certain options allow
to return different
Images (e.g. ADUs,
Gains, input
electrons, etc.)
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Special features

Can be used in an iterative way to “It’s Not a
calculate images for polychromatic Bug:,
sources (although inefficient) It’s a

e Treats parallax for any distance Feature!”
between detector and sample Computer
(assuming point like scattering Wit and Wisdom
source) |

 Requantizied image, ADUs and
gains are returned simultaneously
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Limitations

No treatment of plasma effects (happen with >103 yin a
pixel) so far (although some ideas are present)

 NoO non-centered photon sources (although there Is a
workaround for this)

* Fluorescence of Si not accounted for (code exists from
Medipix simulations by David Pennicard)

e So far limited to silicon as sensor material

* No backscatter/fluorescence from parts behind sensor
(Bumps/ASIC) (but result of a MC-simulation can be fed
iInto HORUS)
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Summary: HORUS

Working horse of detector simulations

 Many improvements: higher speed, less bugs,
more features, etc.

e Point and click interface to investigate behavior
e Less hard coded constrains

 No whole scale MC code (e.g. no fluorescence,
Compton-scattering)

e« Some open issues (eg. Plasma effect)
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XPCS-Simulations

Beware: Change of topic!
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XPCS-Simulations

e Strong demand from community for many (108!)
small pixels (100um or less)

« Sample heating/beam damage prohibits
focusing -> speckles will be small (60-100um)

o Use simple test system and evaluate influence
of pixel size and aperturing as function of
Intensity and noise

e Show error In relevant extracted data
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Investigation of fluctuations in diffraction images

Scientific case XPCS@XFEL: molecular dynamics in
fluids, charge & spin dynamics in crystalline materials,

atomic diffusion, phonons, pump-probe XPCS
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Some possible results from
Investigations with XPCS

* Insight into Interaction

type at probed of BN
ength/tlme Scales 10" ¢ - ) ‘ [ll;lﬁ_?ﬁc Sc.'alt;r-:ring:l Bl
 Determination of [ visieRaman 11 XRay o H T
assoclated time m' ‘
constants = L Visible Briflouin | ! Neutron ‘.. 10°
. . E Scattering L & —
* Determination of 3 — J
anisotropies g.w’ _- R 1iom £
* Investigation of phase & [ VERIES || < S|
transitions (esp. glassy 4 [| | SRt~ ]
StateS) ? BJ Gen. Sourc:es-‘ =
* Determination of rare |
symmetries (XCCS) LA

e ... and much more
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Different ways of
XPCS@XFEL

At

Choice of technique governed by o

investigated time scale t ' TR
— 0.22pus<1<<0.6 ms %ﬁ PR
* intensity autocorrelation function (g2) ) .

 problems for low intensities, _ .
cannot correlate ‘0’ to anything S | - i@

* ‘slow’ time scale -> large particle e
movement -> low Q region -> SAXS

sample

correlation function

g lat)
ﬂ {

m=on HQ.1)
- T << 10 nS T split  XFEL pulse
. . XFEL pulse At
» use split pulse technique I _—
e problems for low intensities, - =3 . - NG
offset value ~1/<I> \ . f
« ‘fast’ time scale -> small particle —

movement -> large Q region -> WAXS X-ray delay unit
For very low intensities (<I> -> 0)  wovee conmostorsun s
photon statistics have to be T
analyzed

sum of speckle patterns
from prompt and delayed
pulse recorded on CCD
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Signal-to-Noise in XPCS

R, UC <] >\/NbeNpix

C: Contrast

<|>. average intensity per speckle
N,:  number of bunches

Ny number of frames per bunch
N,ix: number of Pixels

Aperturing increases C, but decreases <I>,
evaluation of C*<I> by simulation
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How to simulate XPCS

 Take a simple test system and
generate a series of diffraction
patterns

e Simulate detector response as
function of relevant parameters

e Evaluate simulated detector
Images with established and
foreseen technigues

 Quantify and compare results
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XPCS-Simulations

Real space

100pum AGIPD (RAMSES)
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Simple real space system

e Points hopping on a 2D grid by
+1 position in each dimension
(Jjump-diffusion) %_»

e Absence of structure factor due u o
to delta-like points ) } "

e Gaussian ‘illumination function’ 4 % ;
producing Gaussian speckles ]
with 40=2 pixels ) % "

 Oversampled ‘Diffraction’

Image by Fourier transform
(non-integer values)

A
+—P—»
Y
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Photon quantization

 Each image quantizized separately
* Image renormalized to given average intensity
« Each pixel value taken as average intensity individually

 Number of photons sampled randomly according to
Gamma-Poisson statistics:

p(1)=— U *M) (1+ M j_l(1+<'>j_M
TN+ <1 > M

M=1 for the fully coherent case

M=15 for the partially coherent case
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Detector Systems

e |deal: 100um / 200um pixel size (no charge
sharing, QE=1, no detector noise)

 AGIPD: Adaptive Gain Integrating Pixel
Detector, 200um pixel size

« MAAT: Modified AGIPD using Aperturing
Techniques, 200um pixels apertured to 100um

« RAMSES: Reduced AMplitude SEnsing System,
AGIPD with 100pum pixel size

« WAXS/SAXS configuration for 100pm systems
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Detector Geometries

« SAXS: Interesting Q region fits on detector area
-> [imiting factor: pixel density

« WAXS: only small part of the interesting Q
region can be sampled -> limiting factor:
detector area
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Simulated noise sources

 10% rms (uncompensated) intensity fluctuations

— Probably more at low intensities (inherent non-
Gaussian SASE fluctuations)
— Probably less at high intensities (can be corrected for)

* |Incoherent background noise (e.g from higher
harmonics, sample fluorescence, residual gas
scatter, etc.). completely random, probability of
1/100 (Poisson distributed) per 100um pixel
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Parameter space

o 13 different intensities (4e-4 to 40)

e / detector systems

e 4 sets of noise contribution

o 2 states of coherence (M=1 and M=15)
e 300 images per set

* 5 repetitions

=> 0O(10°) simulations / evaluations
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Data evaluation

e (Calculate autocorrelation function (g2) per pixel
* Average values with identical Q

* Fit exponential decay to g2 function

o Extract fit parameters as function of Q

o Calculate average value and (relative) error of fit
arameter
; / r

92(Q,7) = S(Q)| C(Q)e @ +1

\. J
Q=%
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G2 function

-4 |||I|I|‘ ||I|||I|

1.6

lcontrast

1.4

g2
[

1.2

1.0

m IIIIIIII I I I I

1 10 100
lag time
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ACAIE

 Decaying (ideally)
from contrast+1 to 1
with decay time t_

» Artifacts toward large
lag times are reduced
by more frames
(100x - 1000x t.)

e Functional form
determined by particle
Interactions
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Pixel distribution

— 200um detectors
= 100um detectors WAXS Evaluations as
— ! 100um detectors SAXS )

: function of Q

LT T T rT T T i Tl |III|I|I|!II

6000 — Radial symmetry

~ § n in Q-space

— § n allows averaging
’ over pixels with

4000 — — similar Q (5)

# of pixels

— i — Detector is a

: — square, thus the
— number of pixels
— as function of Q
N shows a
distinctive shark
fin shape

2000 ——

I I||||III|‘|III|I|I||II|I| II||IIIII

0
200 300 400 500 600 700
Q value
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G2 function, AGIPD, incoherent noise and intensity fluctuations

G2 at Q=500

Basic data set to be fitted

e For AGIPD contrast is low,
but lowest noise

* RAMSES in WAXS shows
higher contrast and higher
noise

e For MAAT contrast Is as
high as for RAMSES with
similar noise

In the following slides only
the results of the fit will be
shown
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Contrast with fluctuations

Contrast, AGIPD, intensity fluctuations intensity fluctuations

O—6—©100um ideal SAXS
@ ©=©100um ideal WAXS
a—a—OARAMSES SAXS
& -0=ORAMSES WAXS

1.0 g T T TTTTI T T TTTT] T T T TTTE=8-5200um ideal
AGIPD
& > MAAT
0.8 9% —]
p 06 £ —
© — —
c — —
8 — =
0'45:";: P — P N S N " S " ——
0.2 = —
OO:|||||| ol ol ol L1

0.01 0.10 1.00 10.00
<I> per speckle

At average intensities above 0.1 charge sharing effects
decrease the contrast, less strong for bigger pixels

At very low intensities the number of pixels/frames/bunches
IS not high enough for reliable results

MAAT yields contrast of an ideal 100um system
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Contrast with noise

Contrast, AGIPD, incoherent noise and intensity fluctuations

100um ideal SAXS
@ ©=0100um ideal WAXS
a—a—ORAMSES SAXS
@ 0o=o8RAMSES WAXS

intensity fluctuations and incoherent nojse

1.0 T T TTTT] T T 11100 T T T TIE~8—8200um ideal
— | «AGIPD
— >—> MAAT
0.8 &

0.6

contrast

0.4

0.2

I
K]
|

A |
IIII| | IIIIIII| | IIIIII|| | IIIIIII|

0.01 0.10 1.00 10.00
<|> per speckle

Charge sharing independent of noise

0.0

Contrast significantly decreases around the average
Intensity of the incoherent noise (<I_....>=0.01)

noise

MAAT still yields contrast of an ideal 100um system
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D

. . . . 100um ideal SAXS
intensity fluctuations and incoherent nojse__ ©100um ideal WAXS

a—a—0RAMSES SAXS
4 a -8=-o8RAMSES WAXS
2.0x10 E||||| T T TTTT T T 1111 T T T T TTTE—8—£1200um ideal

Correlation time

Correlation time, AGIPD, incoherent noise and intensity fluctuatior

AGIPD
) P—>—> MAAT

F

4
1.5x10 >
{

1.0x10™

5.0%107°

correlation time constant

||||||||‘||||||||‘|I||.‘L

IIII| | IIIIIII| | IIIIIII| | IIIIIII| |

0.01 0.10 1.00 10.00
<I> per speckle

(Q)=(1/t,) should be proportional to Q2 for small Q and show distinct
deviations from this when Q is in the region of the inverse lattice size

Correlation time is linear in 1/Q (crude approximation for this case)

Slightly different slope for different systems (due to crude approximation)
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Error on correlation time
only fluctuations

Optimum Q range for each system Zoom

Green/Yellow

@—6—©100um ideal SAXS

intensity fluctuations o 0= 0100um ideal WAXS j below other
a—a—OBRAMSES SAXS o
& 8- 8RAMSES WAXS |IneS!
= 0.20 O M T T T T TTTTTI T T T TTT3—8—E200um ideal
S — AGIPD c c
2 P—>—> MAAT Bigger pixels
S 7
2 0.15 — win!
= — -
.0 — _
kS = -
2 010 — —
O — —
8 — -
c — .
O — —
= | |
B — - |11 | L 1 1111
[ — -
= 0.00 R, Ll Ll Ll L1
0.01 0.10 1.00 10.00 001 01 O

<|> per speckle

Intensities below <I>=0.01 require more images/bunches/pixels (seen from contrast)

Crossing behavior -> statistical effect: cannot correlate O photons to anything, higher
fraction of non-zero pixels for larger pixel size

For low intensities MAAT (blue) performs as good/bad as small pixel systems in
WAXS geometry
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Error on correlation time
with iIncoherent nois

Optimum Q range for each system

Green/Yellow
below WAXS
lines

%—60—0100um ideal SAXS
©0=90100um ideal WAXS
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Error increases significantly around noise intensity

Crossing behavior only in WAXS geometry

For low intensities MAAT performs as good/bad as small
pixel systems in WAXS geometry
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Reduced Coherence /
Split pulse technique

 Data evaluation for reduced coherence
guantization (m=15) is underway, preliminary
results look similar to full coherence

o Data for split pulse technique has been
calculated and evaluated, however calculation of
5 Images each at 300 different At is not enough
statistics to evaluate performance of the different

systems (even at high intensities)

« Evaluation using photon statistics (# of 0’s, 1's,
2's, etc.) underway
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Summary: XPCS

 Whole simulation chain set-up and tested

e Extraction of parameters allows comparison of different
systems

e At high intensities (SAXS, lim. by pixel density):

— MAAT vyields higher contrast compared to AGIPD
» smaller speckles
» |less focused x-rays
* |less beam damage
e can cope with high intensities
— RAMSES shows superior performance
o amplitude limitation

e At low intensities (WAXS, lim. by detector area):

— AGIPD outperformes other systems
» larger area (Q-space) coverage
» better statistics due to higher non-zero probability

— RAMSES and MAAT show equal performance
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Next Generation XPCS
simulations

e Simulate a more realistic system

— Charge stabilized colloids
« 3D Diffusion
« 3D Volume -> path length difference
* Repulsive screened Coulomb force (Yukawa potential)
* Finite extend of particles -> Structure factor

— Based on PhD Thesis of Fabian Westermeler

« Concentrate on interesting region of phase space (high
Intensities take long to calculate)

e (Calculate enough statistics to evaluate split pulse
technique
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Next generation XPCS simulations

Real space Detector plane
z axis color coded - (|0910(|ntenS|W) color coded)

R

o All simulations in arbitrary units -> normalization constants
* Need to find right parameters to simulate a realistic system
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CDI simulations

 |n principle all tools to calculate CDI are there
e Proper input systems are needed (Lysosyme?)

* Reconstruction algorithms need to be
Implemented and some automation added

* No progress so far due to lack of knowledge
(and time)

« Next big topic on the list
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_,« chiptest gui/<3> =[]

had
Entries 1024
Mean x 7.T98
g Mean y 7342
RMSx 4984

Thank you for your
attention

There surely are a
lot of questions

‘A’ first image acquired with an AGIPD02
assembly bump bonded to a sensor
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