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Outline

• HORUS 
– What’s that?
– Usage and simulation steps
– Approximations, limitations, etc.

• XPCS simulations
– XPCS what’s that?
– Simple test system
– Parameter space
– Data evaluation
– Results

• Outlook on next generation of simulations 



J.Becker, XFEL Seminar, 03.03.2011 2/ 44

What is HORUS?

• HORUS stands for:
Hpad Output Response 
fUnction Simulator

• Collection of IDL routines
• Designed to evaluate 

influences of certain design 
choices for AGIPD

• Expanded to allow simulations 
of photon counting detectors 
(Medipix3) by D. Pennicard
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What HORUS is:

• NO full scale Monte Carlo simulation
– Pseudo analytical treatment of charge transport
– Simplifying assumptions on sensor geometry
– No simulation of surrounding material (Bumps/ASIC/Module 

mechanics)

• NOT tested with whole scale AGIPD (not there yet!)
– Simulation results for Medipix match well
– Test results from all recent AGIPD test chips are included

• NOT Bug free
– Most major bugs are fixed
– Works as designed, passed many consistency checks
– …but you never find the last one
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Design of HORUS

• HORUS is designed as a transparent 
end-to-end simulation tool:
– Needs ‚input image‘ containing the number 

of photons in each pixel
– Provides an output image, i.e. the number 

of detected photons in each pixel
– Simulation parameters/behavior can by 

adjusted by the user
– Additional functionality with special 

options/workarounds
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The HORUS-GUI
Options Images Histograms

Input

Output

Difference

Input image 
selector

Generate 
standard 
patterns

Selector for 
simulation 
parameters

Change of 
detector 
parameters

Additional 
options
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Simulation steps

• Input image processing, 
module definition

• Photon conversion -> 
generates input charge

• Amplification, gain switching, 
CDS simulation

• Treatment of storage cells
• ADC of voltage signals
• Requantization of ADC units
• Construction of the output 

image
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Module definition

• Simulations are performed on 
a ‘per module’ basis

• Input image is sliced into 
pieces

• Each module is an IDL struct
carrying the image information 
of the current simulation step 
and additional information, like 
position, gains etc.

• Number of pixels/ASIC, 
ASICs/module and their 
arrangement is user definable

Module 1
Image

Position
X=…
Y=…...
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Photon conversion

• Each photon is treated separately 
(MC approach)

• Absorption probability taken into 
account (Quantum efficiency, entry 
window as dead layer)

• Parallax effect is modeled
• Dispersion in actual e,h pairs 

created is modeled taking Fano
factor into account

• Charge sharing:
– independent for each photon

– depth dependent Gaussian

– user-provided Cross-Coupling 
Matrix (allows CCE<1, non-uniform 
sharing etc.)
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Amplification, gain 
switching, CDS simulation

• Noise sampled randomly according to ENC of current gain stage
• Charge injected by gain switching can be added (no data yet)
• Switching thresholds, gains and noise can be set by the user
• Fixed gain operation can be simulated by setting thresholds 

correspondingly
• Saturation behavior is unknown, implemented simple clipping to 

maximum allowed value, but code is prepared for different models
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Treatment of storage cells

• Fixed leakage (can be 
corrected for): each cell 
the same each time it is 
read

• Random leakage (can not 
be corrected for): each 
cell different each time it 
is read

• Leakage parameters can 
be set by the user

• Code ready to handle 
more elaborate models
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ADC of voltage signals 
and requantization

• ADC simulation
– Range of ADC taken into account (14 bit)
– Noise of ADC taken into account (4.6 LSB)
– Noise can be modified by the user

• Requantization
– Gain stage taken into account
– Values below 0 (due to noise) are clipped to 0
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Construction of the 
output image

• Image data of each 
module is assembled 
into one large image

• Certain options allow 
to return different 
images (e.g. ADUs, 
Gains, input 
electrons, etc.)

Module i
Image

...
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Special features

• Can be used in an iterative way to 
calculate images for polychromatic 
sources (although inefficient)

• Treats parallax for any distance 
between detector and sample 
(assuming point like scattering 
source)

• Requantizied image, ADUs and 
gains are returned simultaneously
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Limitations

• No treatment of plasma effects (happen with >103 γ in a 
pixel) so far (although some ideas are present)

• No non-centered photon sources (although there is a 
workaround for this)

• Fluorescence of Si not accounted for (code exists from 
Medipix simulations by David Pennicard)

• So far limited to silicon as sensor material
• No backscatter/fluorescence from parts behind sensor 

(Bumps/ASIC) (but result of a MC-simulation can be fed 
into HORUS)
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Summary: HORUS

• Working horse of detector simulations
• Many improvements: higher speed, less bugs, 

more features, etc.
• Point and click interface to investigate behavior
• Less hard coded constrains
• No whole scale MC code (e.g. no fluorescence, 

Compton-scattering)
• Some open issues (eg. Plasma effect)
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XPCS-Simulations

Beware: Change of topic!
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XPCS-Simulations

• Strong demand from community for many (108!) 
small pixels (100µm or less)

• Sample heating/beam damage prohibits 
focusing -> speckles will be small (60-100µm)

• Use simple test system and evaluate influence 
of pixel size and aperturing as function of 
intensity and noise

• Show error in relevant extracted data
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What XPCS does

• Investigation of fluctuations in diffraction images
• Scientific case XPCS@XFEL: molecular dynamics in 

fluids, charge & spin dynamics in crystalline materials, 
atomic diffusion, phonons, pump-probe XPCS
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Some possible results from 
investigations with XPCS

• Insight into interaction 
type at probed 
length/time scales

• Determination of 
associated time 
constants

• Determination of 
anisotropies

• Investigation of phase 
transitions (esp. glassy 
states)

• Determination of rare 
symmetries (XCCS)

• … and much more
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Different ways of 
XPCS@XFEL

• Choice of technique governed by 
investigated time scale τ
– 0.22 µs < τ << 0.6 ms

• intensity autocorrelation function (g2)
• problems for low intensities, 

cannot correlate ‘0’ to anything
• ‘slow’ time scale -> large particle 

movement -> low Q region -> SAXS
– τ << 10 ns

• use split pulse technique
• problems for low intensities, 

offset value ~1/<I>
• ‘fast’ time scale -> small particle 

movement -> large Q region -> WAXS

• For very low intensities (<I> -> 0) 
photon statistics have to be 
analyzed
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Signal-to-Noise in XPCS

C: Contrast
<I>: average intensity per speckle
Nb: number of bunches
Nf: number of frames per bunch
Npix: number of Pixels
Aperturing increases C, but decreases <I>, 

evaluation of C*<I> by simulation

pixfbsn NNNICR ><∝
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How to simulate XPCS

• Take a simple test system and 
generate a series of diffraction 
patterns

• Simulate detector response as 
function of relevant parameters

• Evaluate simulated detector 
images with established and 
foreseen techniques

• Quantify and compare results
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XPCS-Simulations
Real space ‘Diffraction image‘

Detector response

(HORUS)

AGIPD

100µm AGIPD (RAMSES)

FFT

Evaluation
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Simple real space system

• Points hopping on a 2D grid by 
±1 position in each dimension 
(jump-diffusion)

• Absence of structure factor due 
to delta-like points

• Gaussian ‘illumination function’ 
producing Gaussian speckles 
with 4σ=2 pixels

• Oversampled ‘Diffraction’ 
image by Fourier transform 
(non-integer values)
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Photon quantization

• Each image quantizized separately
• Image renormalized to given average intensity
• Each pixel value taken as average intensity individually
• Number of photons sampled randomly according to 

Gamma-Poisson statistics:
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M=1 for the fully coherent case

M=15 for the partially coherent case
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Detector Systems

• Ideal: 100µm / 200µm pixel size (no charge 
sharing, QE=1, no detector noise)

• AGIPD: Adaptive Gain Integrating Pixel 
Detector, 200µm pixel size

• MAAT: Modified AGIPD using Aperturing
Techniques, 200µm pixels apertured to 100µm

• RAMSES: Reduced AMplitude SEnsing System, 
AGIPD with 100µm pixel size

• WAXS/SAXS configuration for 100µm systems
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• SAXS: interesting Q region fits on detector area 
-> limiting factor: pixel density

• WAXS: only small part of the interesting Q 
region can be sampled -> limiting factor: 
detector area

Detector Geometries

WAXSDetector

SAXS
Detector
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Simulated noise sources

• 10% rms (uncompensated) intensity fluctuations
– Probably more at low intensities (inherent non-

Gaussian SASE fluctuations)
– Probably less at high intensities (can be corrected for)

• Incoherent background noise (e.g from higher 
harmonics, sample fluorescence, residual gas 
scatter, etc.): completely random, probability of 
1/100 (Poisson distributed) per 100µm pixel
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Parameter space

• 13 different intensities (4e-4 to 40)
• 7 detector systems
• 4 sets of noise contribution
• 2 states of coherence (M=1 and M=15)
• 300 images per set
• 5 repetitions
=> O(106) simulations / evaluations
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Data evaluation

• Calculate autocorrelation function (g2) per pixel
• Average values with identical Q
• Fit exponential decay to g2 function
• Extract fit parameters as function of Q
• Calculate average value and (relative) error of fit 

parameter
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G2 function

• Decaying (ideally) 
from contrast+1 to 1 
with decay time tc

• Artifacts toward large 
lag times are reduced 
by more frames 
(100x - 1000x tc)

• Functional form 
determined by particle 
interactionstc

contrast
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Pixel distribution

Evaluations as 
function of Q

Radial symmetry 
in Q-space 
allows averaging 
over pixels with 
similar Q (±5)

Detector is a 
square, thus the 
number of pixels 
as function of Q 
shows a 
distinctive shark 
fin shape
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G2 at Q=500
Basic data set to be fitted

• For AGIPD contrast is low, 
but lowest noise

• RAMSES in WAXS shows 
higher contrast and higher 
noise 

• For MAAT contrast is as 
high as for RAMSES with 
similar noise

In the following slides only 
the results of the fit will be 
shown
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Contrast with fluctuations

At average intensities above 0.1 charge sharing effects 
decrease the contrast, less strong for bigger pixels

At very low intensities the number of pixels/frames/bunches 
is not high enough for reliable results

MAAT yields contrast of an ideal 100um system
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Contrast with noise

Charge sharing independent of noise

Contrast significantly decreases around the average 
intensity of the incoherent noise (<Inoise>=0.01)

MAAT still yields contrast of an ideal 100um system
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Correlation time

Γ(Q)=(1/tc) should be proportional to Q2 for small Q and show distinct 
deviations from this when Q is in the region of the inverse lattice size

Correlation time is linear in 1/Q (crude approximation for this case)

Slightly different slope for different systems (due to crude approximation)



J.Becker, XFEL Seminar, 03.03.2011 37/ 44

Error on correlation time 
only fluctuations

Intensities below <I>=0.01 require more images/bunches/pixels (seen from contrast)

Crossing behavior -> statistical effect: cannot correlate 0 photons to anything, higher 
fraction of non-zero pixels for larger pixel size

For low intensities MAAT (blue) performs as good/bad as small pixel systems in 
WAXS geometry

Optimum Q range for each system Zoom Green/Yellow 
below other 

lines!

Bigger pixels 
win!
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Error on correlation time 
with incoherent noise

Error increases significantly around noise intensity

Crossing behavior only in WAXS geometry

For low intensities MAAT performs as good/bad as small 
pixel systems in WAXS geometry

Optimum Q range for each system Zoom Green/Yellow 
below WAXS 

lines

Bigger pixels 
win, but noise 
ruins the game
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Reduced Coherence / 
Split pulse technique

• Data evaluation for reduced coherence 
quantization (m=15) is underway, preliminary 
results look similar to full coherence

• Data for split pulse technique has been 
calculated and evaluated, however calculation of 
5 images each at 300 different ∆t is not enough 
statistics to evaluate performance of the different 
systems (even at high intensities)

• Evaluation using photon statistics (# of 0’s, 1’s, 
2’s, etc.) underway
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Summary: XPCS

• Whole simulation chain set-up and tested
• Extraction of parameters allows comparison of different 

systems
• At high intensities (SAXS, lim. by pixel density):

– MAAT yields higher contrast compared to AGIPD
• smaller speckles
• less focused x-rays
• less beam damage
• can cope with high intensities

– RAMSES shows superior performance
• amplitude limitation

• At low intensities (WAXS, lim. by detector area):
– AGIPD outperformes other systems

• larger area (Q-space) coverage
• better statistics due to higher non-zero probability

– RAMSES and MAAT show equal performance



J.Becker, XFEL Seminar, 03.03.2011 41/ 44

Next Generation XPCS 
simulations

• Simulate a more realistic system
– Charge stabilized colloids

• 3D Diffusion 

• 3D Volume -> path length difference
• Repulsive screened Coulomb force (Yukawa potential)

• Finite extend of particles -> Structure factor

– Based on PhD Thesis of Fabian Westermeier

• Concentrate on interesting region of phase space (high 
intensities take long to calculate)

• Calculate enough statistics to evaluate split pulse 
technique
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Next generation XPCS simulations

• All simulations in arbitrary units -> normalization constants
• Need to find right parameters to simulate a realistic system

Real space
(z axis color coded)

Detector plane
(log10(intensity) color coded)
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CDI simulations

• In principle all tools to calculate CDI are there
• Proper input systems are needed (Lysosyme?)
• Reconstruction algorithms need to be 

implemented and some automation added
• No progress so far due to lack of knowledge 

(and time)
• Next big topic on the list
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Thank you for your 
attention

There surely are a 
lot of questions

‘A’ first image acquired with an AGIPD02 
assembly bump bonded to a sensor


