

Charge losses close to the Si-SiO₂-interface*)

1. Why study? 2. Measurement techniques 3. Results 4. Conclusions

*) work mainly done by T. Poehlsen + S.Schuwalow, Hamburg

Universität Hamburg

Why study?

- 1. Impact on charge collection, charge sharing, charge memory
 - enhanced charge collection time + increased plasma effect
 → signal spreading + losses + spill over to next XFEL bunch
- 2. Stability of sensor performance (calibration!)
 - surface conditions impact on device stability (breakdown, operation in vacuum and/or finite humidity)
 - stability of charge collection vs. time and operating conditions
 - stability of dark current, capacitances (noise) vs time
- 3. Understand boundary conditions for simulations

\rightarrow Is it a problem at all? and if yes

- \rightarrow Is there a sensor design which avoids all that?
- (NB. In my opinion an "old unresolved" problem of Si sensors which has caused malfunctioning of sensors in the past)

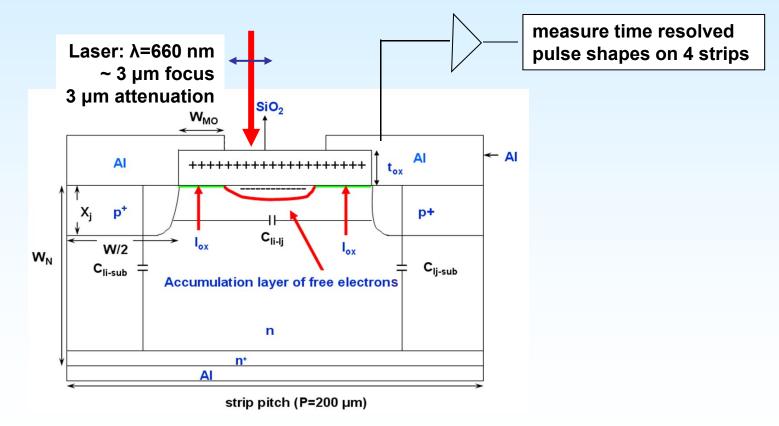
2.1 Sensors investigated:

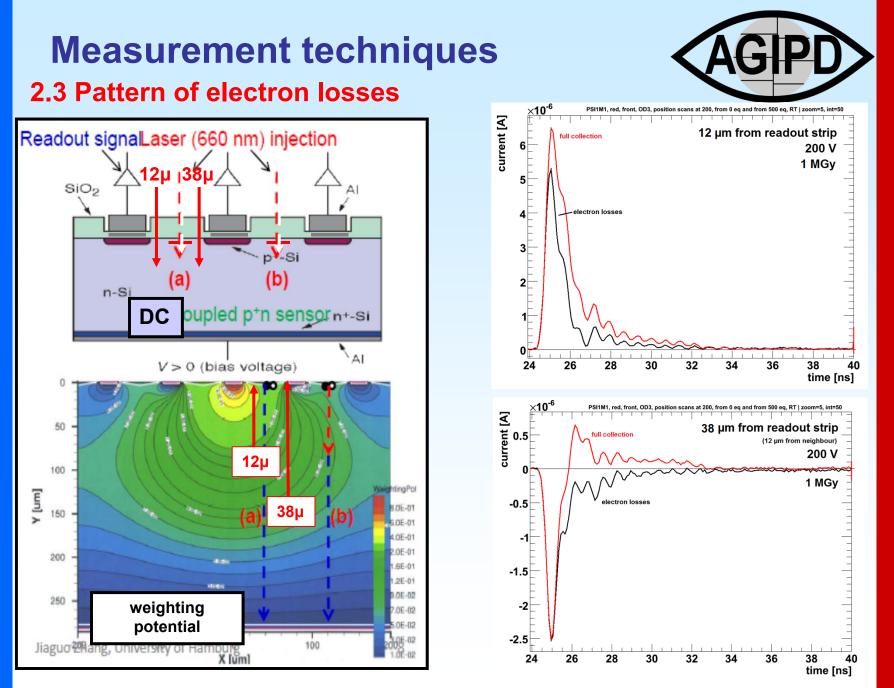
- DC coupled strip sensor from Hamamatsu (50 µm pitch)
- AC coupled strip sensor from CIS (80 µm pitch) for this sensor we have a good knowledge of several technological parameters

(both sensor have an overall passivation (apart from bonding windows))

→ results similar (only results of DC-sensor shown) → independent of technology?

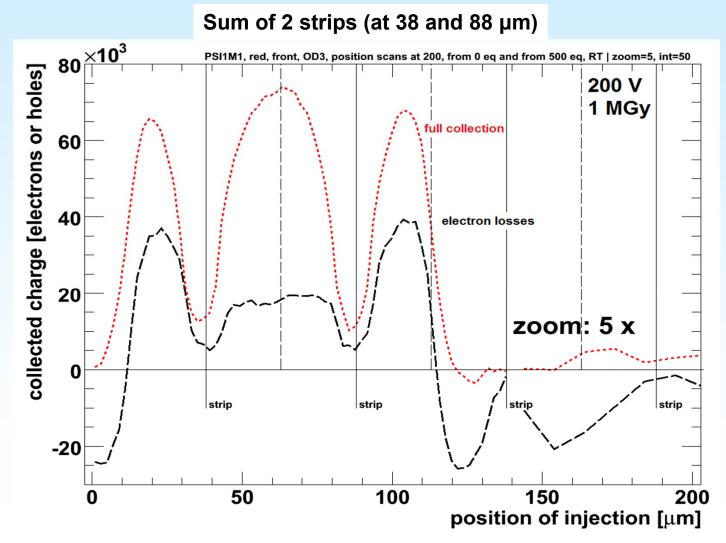
Parameter	DC-coupled strip sensor	AC-coupled strip sensor
Pitch	$50 \ \mu m$	80 μm
Gap	39 µm	60 μm
Width of implantation	11 µm	20 µm
Depth of implantation	-	1.2 µm
Metal overhang	2 µm	-2 μm
Number of strips	128	98
Length of strips	7956 µm	7800 µm
Thickness of sensor	$450 \ \mu m$	$285\pm10 \ \mu m$
Thickness of SiO_2/Si_3N_4	334 nm	(200+50) nm & $(300+50)$ nm
Thickness of passivation	1 µm	1 µm
Orientation	(1 1 1)	(1 0 0)

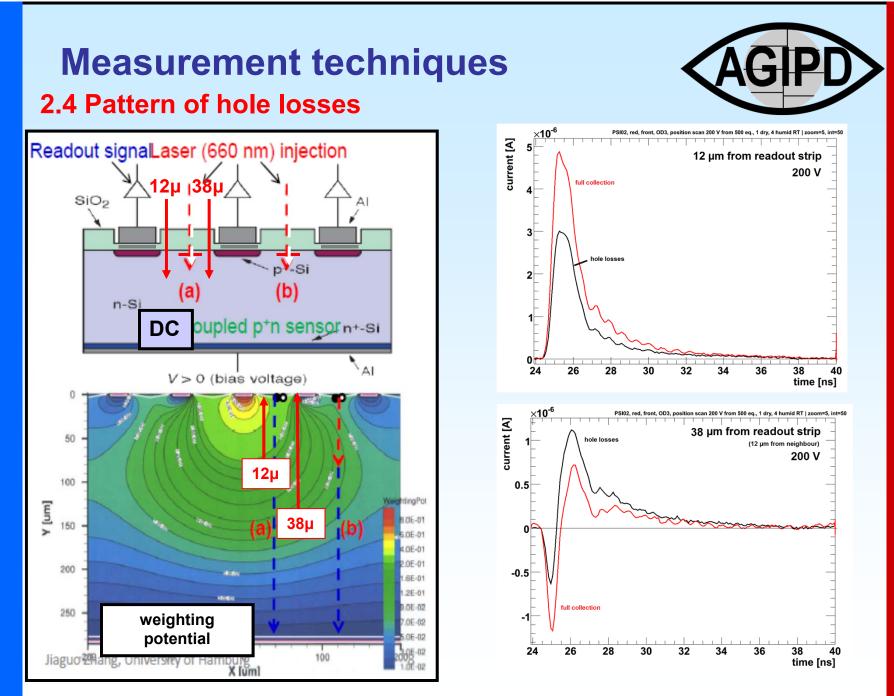

Geometry parameters of DC- and AC-coupled strip sensors:


Robert Klanner, AGIPD Meeting, 8.-9.3.2011

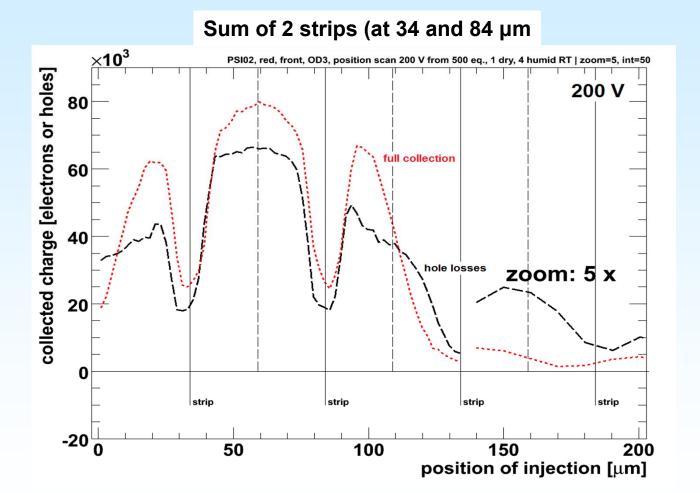
2.2 Scan with laser light

- make voltage scans + change humidity (N_2 -jet <-> cup with H_2O)
- measure pulse shape vs. position, time + control (change) humidity
- record also current




Robert Klanner, AGIPD Meeting, 8.-9.3.2011

2.3 Pattern of electron losses


5/ 10

Robert Klanner, AGIPD Meeting, 8.-9.3.2011

2.4 Pattern of hole losses

Results

3.1. Unirradiated sensor

"steady-state" if sensor for some time in "humid" conditions

V-ramp $\uparrow \downarrow$ in steady-state \rightarrow no losses

V-ramp ↑ from steady-state at 0V under "dry" condition: electron losses

	-
- 100 V	~ 60%
- 200 V	~ 40 %
- 300 V	$\sim 10 \%$
- 400 V	no losses observed
500 TT	and the second streament

- 500 V no losses observed

V-ramp↓from steady-state at 500 V under "dry" condition: hole losses

- 100 V	~ 85%
- 200 V	~ 80 %
- 300 V	~ 75 %
- 400 V	~ 50%
- 500 V	no losses observed

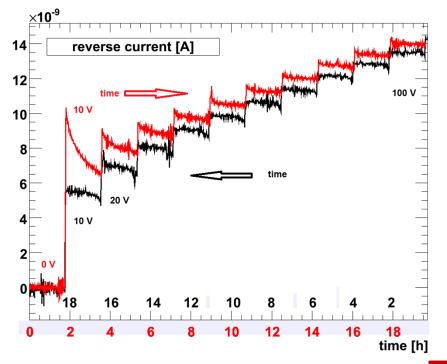
- stable (> 1 day) conditions for
 - "dry = N_2 " conditions
- change (< 1 hour) to "steadystate" for "humid" conditions

Results

3.2. 1 MGy irradiated sensor

"steady-state" if sensor for some time in "humid" conditions

- V-ramp $\uparrow \downarrow \rightarrow$ electron losses
- 100 V $\sim 50\%$ e-losses
- 200 V $\,\sim 45\%$ e-losses
- 300 V $\sim 30\%$ e-losses
- 400 V ~10% e-losses
- 500 V $\,\,\sim$ 0% no losses


V-ramp ↑ starting from steady-state at 0 V "dry cond." → electron losses - 200 V ~90% e-losses - 500 V ~80% e-losses (stable for > 6 h) V-ramp ↓ starting from steady-state at 500 V "dry" → electron losses

dark current (=surface current) also shows time dependence:

- V-ramp ↑
 - → steady-state reached from above
- V-ramp↓

Conclusion

- Measurements are reproducible !
- Similar results for sensors from 2 vendors
- Non-irradiated sensors:
 - hole or electron losses, depending on direction of voltage ramping for "dry" conditions (stable over > 1day !)
 - no losses for "wet" conditions
- Irradiated sensor:
 - electron losses (NB up to 90 %!) for < 500 Volts</p>
 - time dependence of current correlated with e-losses
- Physics origin of effect unclear in particular unclear how to simulate it (boundary conditions on top of oxide an at SiO₂-interface not clear)
- Still to understand impact on sensor performance at XFEL
- Impacof surface effects on max. operating voltage
- Does high conductive passivation stabilize sensors ?