Impact of high photon densities on AGIPD requirements

<u>Julian Becker</u> University of Hamburg Detector Laboratory

- 1. Heating estimations
- 2. Confined breakdown
- 3. Range switching in adjacent pixels
- 4. Measurements on charge collection time
- 5. Measurements of the PSF
- 6. Baseline sensor specification
- 7. Summary

new

data

Julian Becker Uni-Hamburg

Instantaneous local heating

Basic estimation of local temperature increase due to photon absorption, neglecting heat conductance

$$\Delta T = \frac{N_{\gamma} E_{\gamma}}{V \rho c_{Si}} = \frac{2.5mK}{10^6 \ 12 \ keV \ \gamma}$$

To reach melting temperature > 5*10¹¹ photons are needed

$$E_{\gamma} = 12 \ keV$$

$$V = 40x40x300 \ \mu m^{3}$$

$$\rho = 2.33 \ {}^{g}_{cm^{3}}$$

$$c_{Si} = 0.7 \ {}^{J}_{gK}$$

Total heat load

Heat sources:

photon absorption, photocurrent, leakage current

$$P_{\gamma abs, bunchtrain} = N_{\gamma} E_{\gamma} f = \frac{9.6W}{10^9 \, 12 \, keV \, \gamma} N_{\gamma}$$

$$P_{photo,bunchtrain} = UI = U \frac{dQ}{dt} = U \frac{eN_{\gamma}E_{\gamma}f}{3.6eV} \frac{t_{drift}}{T_{rep}}$$

$$f = 5 Mhz$$

$$v_{drift,sat} = 1x10^{5} m / s$$

$$\overline{P} = P_{bunchtrain} t_{bunchtrain} f_{XFEL}$$

$$\overline{P} = 6x10^{-3} P_{bunchtrain}$$

$$= U \frac{eN_{\gamma}E_{\gamma}f^{2}d}{3.6eVv_{drift}} = U \frac{67mW}{10^{9}12\,keV\gamma}N_{\gamma}$$

$$P_{leak} = UI_{leak} \implies \overline{P}_{total} < \frac{1W}{10^{9}12\,keV\gamma}N_{\gamma} + UI_{leak}$$

$$\longrightarrow \Delta T_{bunchtrain}(1Mpix, 1000V, 10^{9}\gamma) = 2mK$$

Local temperature increase

Estimation of local temperature increase during bunch train assuming 10⁶ photons in a single pixel for all 3000 frames and neighboring pixels at constant temperature (heat conductance only, no additional cooling)

$$\begin{split} P_{10^{6}\gamma,total} &\leq 80mW \\ \dot{Q}_{total} &= \left(4\frac{200x500}{200}\right)\mu m * \lambda\Delta T \\ P_{\gamma,bunchtrain} &= \dot{Q} \\ &\Rightarrow \Delta T \leq \frac{0.27K}{10^{6}\ 12\ keV\ \gamma} N_{\gamma} \end{split}$$

$$\lambda_{Si} = 148 \frac{W}{m*K}$$
$$\dot{Q}_{neighbor} = \lambda \frac{A}{l} \Delta T$$
$$\dot{Q}_{neighbor} = 4 \dot{Q}_{neighbor}$$

Confined breakdown

Range switching in adjacent pixels

Current/charge pulse on adjacent pixel assuming continuous photon absorption, n-in-n pixels, no plasma effects and 500V bias.

Range switching will be triggered if peak of red curve > 85 photons.

 \Rightarrow N γ > 2600 in primary pixel will trigger switching to second gain stage in adjacent pixels

 \Rightarrow N γ > 6.8x10⁴ in primary pixel will trigger switching to third gain stage in adjacent pixels

Having a primary pixel in third gain stage will result in switching in adjacent pixels even if less than 85 photons are absorbed

Range switching in adjacent pixels

sensor	voltage	Nγ in primary	Nγ in primary
		2nd stage	3rd stage
500µm	500V	2615	6.77x10 ⁴
500µm	1000V	2880	7.45x10 ⁴
1000µm	500V	2225	5.76x10 ⁴
1000µm	1000V	2414	6.25x10 ⁴

Having a primary pixel in third gain stage will result in switching in adjacent pixels even if less than 85 photons are absorbed

Measurements on PSI strip sensor

PSI strip sensor

<111> orientation

thickness 450 µm

F4=Konf

8/15

- injection of 660 nm and 1015 nm light from rear side
- pn junction on front side (low field at injection side)
- position scan with spotsize ~3 µm

tightly focused (3 µm) soft x-rays (~1 keV) on 450 µm p-in-n strip sensor

plasma delays for low bias voltages included

=> charge collection time stays below 60 ns even for very high N γ if sufficient voltage is applied

Measurements of the PSF

new parameterization:

Gaussian (diffusion) \otimes circle (plasma)

=> only of minor influence on imaging performance as plasma effects stay mostly confined in the pixels

tightly focused (3 μm), hard x-rays (~12 keV) on 450 μm p-in-n sensor strongly dependent on threshold level (exponential pulse shape!)

long tails may be an issue, peak increasing with voltage

•no significant effects on current frame

•tail may spill over to next frame (0.1% of 10⁵ photons is still 100 photons!)

Measurements of the PSF

new parameterization:

Gaussian (diffusion) \otimes circle (plasma)

=> only of minor influence on imaging performance up to 1×10^4 photons as plasma effects stay mostly confined in the pixels

Baseline sensor specification

Choice of technology

• n-in-n

- superior performance in high density case
- edges on ground

Choice of bias voltage

- reasonably high (500 V? depends on resistivity, i.e, U_{dep})
 - less cumbersome than 1000 V (wire bonds etc.)
 - charge collection time can be "tuned" to ASIC needs
 - less peak voltage for the ASIC to stand

Choice of temperature

- low (-20℃?)
 - faster charge collection time (-13% for 20℃ to -20℃)
 - about 5% increase in spread for high voltages (20°C to -20℃)

input from mechanical design welcome

> input from ASIC designers welcome

Summary

- Heating (local, global) not a problem if leakage current is low
- Pixel "killing" threshold probably around 10⁷-10⁸ photons/pixel
 - Additional input protection needed?
- Range switching will occur in adjacent pixels if primary pixel is in third gain stage
- Bright pixels have long tails (no problem for soft x-rays)
 - Memory effects

- under investigation next

- Effective non-linearity
- 500 V seems sufficient bias (even in p-in-n!) to prohibit plasma effects from deterioration the imaging performance

Backup

no exponential shape!